mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 21:37:20 +00:00
community[minor]: Adding support for Infinispan as VectorStore (#17861)
**Description:** This integrates Infinispan as a vectorstore. Infinispan is an open-source key-value data grid, it can work as single node as well as distributed. Vector search is supported since release 15.x For more: [Infinispan Home](https://infinispan.org) Integration tests are provided as well as a demo notebook
This commit is contained in:
committed by
GitHub
parent
cca0167917
commit
51f3902bc4
@@ -240,6 +240,12 @@ def _import_hologres() -> Any:
|
||||
return Hologres
|
||||
|
||||
|
||||
def _import_infinispanvs() -> Any:
|
||||
from langchain_community.vectorstores.infinispanvs import InfinispanVS
|
||||
|
||||
return InfinispanVS
|
||||
|
||||
|
||||
def _import_kdbai() -> Any:
|
||||
from langchain_community.vectorstores.kdbai import KDBAI
|
||||
|
||||
@@ -569,6 +575,8 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_hanavector()
|
||||
elif name == "Hologres":
|
||||
return _import_hologres()
|
||||
elif name == "InfinispanVS":
|
||||
return _import_infinispanvs()
|
||||
elif name == "KDBAI":
|
||||
return _import_kdbai()
|
||||
elif name == "DistanceStrategy":
|
||||
@@ -696,6 +704,7 @@ __all__ = [
|
||||
"FAISS",
|
||||
"HanaDB",
|
||||
"Hologres",
|
||||
"InfinispanVS",
|
||||
"KDBAI",
|
||||
"DistanceStrategy",
|
||||
"Kinetica",
|
||||
|
506
libs/community/langchain_community/vectorstores/infinispanvs.py
Normal file
506
libs/community/langchain_community/vectorstores/infinispanvs.py
Normal file
@@ -0,0 +1,506 @@
|
||||
"""Module providing Infinispan as a VectorStore"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import (
|
||||
Any,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
)
|
||||
|
||||
import requests
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InfinispanVS(VectorStore):
|
||||
"""`Infinispan` VectorStore interface.
|
||||
|
||||
This class exposes the method to present Infinispan as a
|
||||
VectorStore. It relies on the Infinispan class (below) which takes care
|
||||
of the REST interface with the server.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import InfinispanVS
|
||||
from mymodels import RGBEmbeddings
|
||||
|
||||
vectorDb = InfinispanVS.from_documents(docs,
|
||||
embedding=RGBEmbeddings(),
|
||||
output_fields=["texture", "color"],
|
||||
lambda_key=lambda text,meta: str(meta["_key"]),
|
||||
lambda_content=lambda item: item["color"])
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding: Optional[Embeddings] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
clear_old: Optional[bool] = True,
|
||||
**kwargs: Any,
|
||||
):
|
||||
self.ispn = Infinispan(**kwargs)
|
||||
self._configuration = kwargs
|
||||
self._cache_name = str(self._configuration.get("cache_name", "vector"))
|
||||
self._entity_name = str(self._configuration.get("entity_name", "vector"))
|
||||
self._embedding = embedding
|
||||
self._textfield = self._configuration.get("textfield", "text")
|
||||
self._vectorfield = self._configuration.get("vectorfield", "vector")
|
||||
self._to_content = self._configuration.get(
|
||||
"lambda_content", lambda item: self._default_content(item)
|
||||
)
|
||||
self._to_metadata = self._configuration.get(
|
||||
"lambda_metadata", lambda item: self._default_metadata(item)
|
||||
)
|
||||
self._output_fields = self._configuration.get("output_fields")
|
||||
self._ids = ids
|
||||
if clear_old:
|
||||
self.ispn.cache_clear(self._cache_name)
|
||||
|
||||
def _default_metadata(self, item: dict) -> dict:
|
||||
meta = dict(item)
|
||||
meta.pop(self._vectorfield, None)
|
||||
meta.pop(self._textfield, None)
|
||||
meta.pop("_type", None)
|
||||
return meta
|
||||
|
||||
def _default_content(self, item: dict[str, Any]) -> Any:
|
||||
return item.get(self._textfield)
|
||||
|
||||
def schema_create(self, proto: str) -> requests.Response:
|
||||
"""Deploy the schema for the vector db
|
||||
Args:
|
||||
proto(str): protobuf schema
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.schema_post(self._entity_name + ".proto", proto)
|
||||
|
||||
def schema_delete(self) -> requests.Response:
|
||||
"""Delete the schema for the vector db
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.schema_delete(self._entity_name + ".proto")
|
||||
|
||||
def cache_create(self, config: str = "") -> requests.Response:
|
||||
"""Create the cache for the vector db
|
||||
Args:
|
||||
config(str): configuration of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
if config == "":
|
||||
config = (
|
||||
'''
|
||||
{
|
||||
"distributed-cache": {
|
||||
"owners": "2",
|
||||
"mode": "SYNC",
|
||||
"statistics": true,
|
||||
"encoding": {
|
||||
"media-type": "application/x-protostream"
|
||||
},
|
||||
"indexing": {
|
||||
"enabled": true,
|
||||
"storage": "filesystem",
|
||||
"startup-mode": "AUTO",
|
||||
"indexing-mode": "AUTO",
|
||||
"indexed-entities": [
|
||||
"'''
|
||||
+ self._entity_name
|
||||
+ """"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
)
|
||||
return self.ispn.cache_post(self._cache_name, config)
|
||||
|
||||
def cache_delete(self) -> requests.Response:
|
||||
"""Delete the cache for the vector db
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.cache_delete(self._cache_name)
|
||||
|
||||
def cache_clear(self) -> requests.Response:
|
||||
"""Clear the cache for the vector db
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.cache_clear(self._cache_name)
|
||||
|
||||
def cache_index_clear(self) -> requests.Response:
|
||||
"""Clear the index for the vector db
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.index_clear(self._cache_name)
|
||||
|
||||
def cache_index_reindex(self) -> requests.Response:
|
||||
"""Rebuild the for the vector db
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
return self.ispn.index_reindex(self._cache_name)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
result = []
|
||||
embeds = self._embedding.embed_documents(list(texts)) # type: ignore
|
||||
if not metadatas:
|
||||
metadatas = [{} for _ in texts]
|
||||
ids = self._ids or [str(uuid.uuid4()) for _ in texts]
|
||||
data_input = list(zip(metadatas, embeds, ids))
|
||||
for metadata, embed, key in data_input:
|
||||
data = {"_type": self._entity_name, self._vectorfield: embed}
|
||||
data.update(metadata)
|
||||
data_str = json.dumps(data)
|
||||
self.ispn.put(key, data_str, self._cache_name)
|
||||
result.append(key)
|
||||
return result
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to query."""
|
||||
documents = self.similarity_search_with_score(query=query, k=k)
|
||||
return [doc for doc, _ in documents]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Perform a search on a query string and return results with score.
|
||||
|
||||
Args:
|
||||
query (str): The text being searched.
|
||||
k (int, optional): The amount of results to return. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
List[Tuple[Document, float]]
|
||||
"""
|
||||
embed = self._embedding.embed_query(query) # type: ignore
|
||||
documents = self.similarity_search_with_score_by_vector(embedding=embed, k=k)
|
||||
return documents
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self, embedding: List[float], k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
res = self.similarity_search_with_score_by_vector(embedding, k)
|
||||
return [doc for doc, _ in res]
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
List of pair (Documents, score) most similar to the query vector.
|
||||
"""
|
||||
if self._output_fields is None:
|
||||
query_str = (
|
||||
"select v, score(v) from "
|
||||
+ self._entity_name
|
||||
+ " v where v."
|
||||
+ self._vectorfield
|
||||
+ " <-> "
|
||||
+ json.dumps(embedding)
|
||||
+ "~"
|
||||
+ str(k)
|
||||
)
|
||||
else:
|
||||
query_proj = "select "
|
||||
for field in self._output_fields[:-1]:
|
||||
query_proj = query_proj + "v." + field + ","
|
||||
query_proj = query_proj + "v." + self._output_fields[-1]
|
||||
query_str = (
|
||||
query_proj
|
||||
+ ", score(v) from "
|
||||
+ self._entity_name
|
||||
+ " v where v."
|
||||
+ self._vectorfield
|
||||
+ " <-> "
|
||||
+ json.dumps(embedding)
|
||||
+ "~"
|
||||
+ str(k)
|
||||
)
|
||||
query_res = self.ispn.req_query(query_str, self._cache_name)
|
||||
result = json.loads(query_res.text)
|
||||
return self._query_result_to_docs(result)
|
||||
|
||||
def _query_result_to_docs(
|
||||
self, result: dict[str, Any]
|
||||
) -> List[Tuple[Document, float]]:
|
||||
documents = []
|
||||
for row in result["hits"]:
|
||||
hit = row["hit"] or {}
|
||||
if self._output_fields is None:
|
||||
entity = hit["*"]
|
||||
else:
|
||||
entity = {key: hit.get(key) for key in self._output_fields}
|
||||
doc = Document(
|
||||
page_content=self._to_content(entity),
|
||||
metadata=self._to_metadata(entity),
|
||||
)
|
||||
documents.append((doc, hit["score()"]))
|
||||
return documents
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls: Type[InfinispanVS],
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
clear_old: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> InfinispanVS:
|
||||
"""Return VectorStore initialized from texts and embeddings."""
|
||||
infinispanvs = cls(embedding=embedding, ids=ids, clear_old=clear_old, **kwargs)
|
||||
if texts:
|
||||
infinispanvs.add_texts(texts, metadatas)
|
||||
return infinispanvs
|
||||
|
||||
|
||||
REST_TIMEOUT = 10
|
||||
|
||||
|
||||
class Infinispan:
|
||||
"""Helper class for `Infinispan` REST interface.
|
||||
|
||||
This class exposes the Infinispan operations needed to
|
||||
create and set up a vector db.
|
||||
|
||||
You need a running Infinispan (15+) server without authentication.
|
||||
You can easily start one, see: https://github.com/rigazilla/infinispan-vector#run-infinispan
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
self._configuration = kwargs
|
||||
self._schema = str(self._configuration.get("schema", "http"))
|
||||
self._host = str(self._configuration.get("hosts", ["127.0.0.1:11222"])[0])
|
||||
self._default_node = self._schema + "://" + self._host
|
||||
self._cache_url = str(self._configuration.get("cache_url", "/rest/v2/caches"))
|
||||
self._schema_url = str(self._configuration.get("cache_url", "/rest/v2/schemas"))
|
||||
self._use_post_for_query = str(
|
||||
self._configuration.get("use_post_for_query", True)
|
||||
)
|
||||
|
||||
def req_query(
|
||||
self, query: str, cache_name: str, local: bool = False
|
||||
) -> requests.Response:
|
||||
"""Request a query
|
||||
Args:
|
||||
query(str): query requested
|
||||
cache_name(str): name of the target cache
|
||||
local(boolean): whether the query is local to clustered
|
||||
Returns:
|
||||
An http Response containing the result set or errors
|
||||
"""
|
||||
if self._use_post_for_query:
|
||||
return self._query_post(query, cache_name, local)
|
||||
return self._query_get(query, cache_name, local)
|
||||
|
||||
def _query_post(
|
||||
self, query_str: str, cache_name: str, local: bool = False
|
||||
) -> requests.Response:
|
||||
api_url = (
|
||||
self._default_node
|
||||
+ self._cache_url
|
||||
+ "/"
|
||||
+ cache_name
|
||||
+ "?action=search&local="
|
||||
+ str(local)
|
||||
)
|
||||
data = {"query": query_str}
|
||||
data_json = json.dumps(data)
|
||||
response = requests.post(
|
||||
api_url,
|
||||
data_json,
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=REST_TIMEOUT,
|
||||
)
|
||||
return response
|
||||
|
||||
def _query_get(
|
||||
self, query_str: str, cache_name: str, local: bool = False
|
||||
) -> requests.Response:
|
||||
api_url = (
|
||||
self._default_node
|
||||
+ self._cache_url
|
||||
+ "/"
|
||||
+ cache_name
|
||||
+ "?action=search&query="
|
||||
+ query_str
|
||||
+ "&local="
|
||||
+ str(local)
|
||||
)
|
||||
response = requests.get(api_url, timeout=REST_TIMEOUT)
|
||||
return response
|
||||
|
||||
def post(self, key: str, data: str, cache_name: str) -> requests.Response:
|
||||
"""Post an entry
|
||||
Args:
|
||||
key(str): key of the entry
|
||||
data(str): content of the entry in json format
|
||||
cache_name(str): target cache
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
|
||||
response = requests.post(
|
||||
api_url,
|
||||
data,
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=REST_TIMEOUT,
|
||||
)
|
||||
return response
|
||||
|
||||
def put(self, key: str, data: str, cache_name: str) -> requests.Response:
|
||||
"""Put an entry
|
||||
Args:
|
||||
key(str): key of the entry
|
||||
data(str): content of the entry in json format
|
||||
cache_name(str): target cache
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
|
||||
response = requests.put(
|
||||
api_url,
|
||||
data,
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=REST_TIMEOUT,
|
||||
)
|
||||
return response
|
||||
|
||||
def get(self, key: str, cache_name: str) -> requests.Response:
|
||||
"""Get an entry
|
||||
Args:
|
||||
key(str): key of the entry
|
||||
cache_name(str): target cache
|
||||
Returns:
|
||||
An http Response containing the entry or errors
|
||||
"""
|
||||
api_url = self._default_node + self._cache_url + "/" + cache_name + "/" + key
|
||||
response = requests.get(
|
||||
api_url, headers={"Content-Type": "application/json"}, timeout=REST_TIMEOUT
|
||||
)
|
||||
return response
|
||||
|
||||
def schema_post(self, name: str, proto: str) -> requests.Response:
|
||||
"""Deploy a schema
|
||||
Args:
|
||||
name(str): name of the schema. Will be used as a key
|
||||
proto(str): protobuf schema
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._schema_url + "/" + name
|
||||
response = requests.post(api_url, proto, timeout=REST_TIMEOUT)
|
||||
return response
|
||||
|
||||
def cache_post(self, name: str, config: str) -> requests.Response:
|
||||
"""Create a cache
|
||||
Args:
|
||||
name(str): name of the cache.
|
||||
config(str): configuration of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._cache_url + "/" + name
|
||||
response = requests.post(
|
||||
api_url,
|
||||
config,
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=REST_TIMEOUT,
|
||||
)
|
||||
return response
|
||||
|
||||
def schema_delete(self, name: str) -> requests.Response:
|
||||
"""Delete a schema
|
||||
Args:
|
||||
name(str): name of the schema.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._schema_url + "/" + name
|
||||
response = requests.delete(api_url, timeout=REST_TIMEOUT)
|
||||
return response
|
||||
|
||||
def cache_delete(self, name: str) -> requests.Response:
|
||||
"""Delete a cache
|
||||
Args:
|
||||
name(str): name of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = self._default_node + self._cache_url + "/" + name
|
||||
response = requests.delete(api_url, timeout=REST_TIMEOUT)
|
||||
return response
|
||||
|
||||
def cache_clear(self, cache_name: str) -> requests.Response:
|
||||
"""Clear a cache
|
||||
Args:
|
||||
cache_name(str): name of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = (
|
||||
self._default_node + self._cache_url + "/" + cache_name + "?action=clear"
|
||||
)
|
||||
response = requests.post(api_url, timeout=REST_TIMEOUT)
|
||||
return response
|
||||
|
||||
def index_clear(self, cache_name: str) -> requests.Response:
|
||||
"""Clear an index on a cache
|
||||
Args:
|
||||
cache_name(str): name of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = (
|
||||
self._default_node
|
||||
+ self._cache_url
|
||||
+ "/"
|
||||
+ cache_name
|
||||
+ "/search/indexes?action=clear"
|
||||
)
|
||||
return requests.post(api_url, timeout=REST_TIMEOUT)
|
||||
|
||||
def index_reindex(self, cache_name: str) -> requests.Response:
|
||||
"""Rebuild index on a cache
|
||||
Args:
|
||||
cache_name(str): name of the cache.
|
||||
Returns:
|
||||
An http Response containing the result of the operation
|
||||
"""
|
||||
api_url = (
|
||||
self._default_node
|
||||
+ self._cache_url
|
||||
+ "/"
|
||||
+ cache_name
|
||||
+ "/search/indexes?action=reindex"
|
||||
)
|
||||
return requests.post(api_url, timeout=REST_TIMEOUT)
|
@@ -0,0 +1,135 @@
|
||||
"""Test Infinispan functionality."""
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.vectorstores import InfinispanVS
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import (
|
||||
FakeEmbeddings,
|
||||
fake_texts,
|
||||
)
|
||||
|
||||
|
||||
def _infinispan_setup() -> None:
|
||||
ispnvs = InfinispanVS()
|
||||
ispnvs.cache_delete()
|
||||
ispnvs.schema_delete()
|
||||
proto = """
|
||||
/**
|
||||
* @Indexed
|
||||
*/
|
||||
message vector {
|
||||
/**
|
||||
* @Vector(dimension=10)
|
||||
*/
|
||||
repeated float vector = 1;
|
||||
optional string text = 2;
|
||||
optional string label = 3;
|
||||
optional int32 page = 4;
|
||||
}
|
||||
"""
|
||||
ispnvs.schema_create(proto)
|
||||
ispnvs.cache_create()
|
||||
ispnvs.cache_index_clear()
|
||||
|
||||
|
||||
def _infinispanvs_from_texts(
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
clear_old: Optional[bool] = True,
|
||||
**kwargs: Any,
|
||||
) -> InfinispanVS:
|
||||
texts = [{"text": t} for t in fake_texts]
|
||||
if metadatas is None:
|
||||
metadatas = texts
|
||||
else:
|
||||
[m.update(t) for (m, t) in zip(metadatas, texts)]
|
||||
return InfinispanVS.from_texts(
|
||||
fake_texts,
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
clear_old=clear_old,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def test_infinispan() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
_infinispan_setup()
|
||||
docsearch = _infinispanvs_from_texts()
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_infinispan_with_metadata() -> None:
|
||||
"""Test with metadata"""
|
||||
_infinispan_setup()
|
||||
meta = []
|
||||
for _ in range(len(fake_texts)):
|
||||
meta.append({"label": "test"})
|
||||
docsearch = _infinispanvs_from_texts(metadatas=meta)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"label": "test"})]
|
||||
|
||||
|
||||
def test_infinispan_with_metadata_with_output_fields() -> None:
|
||||
"""Test with metadata"""
|
||||
_infinispan_setup()
|
||||
metadatas = [{"page": i, "label": "label" + str(i)} for i in range(len(fake_texts))]
|
||||
c = {"output_fields": ["label", "page", "text"]}
|
||||
docsearch = _infinispanvs_from_texts(metadatas=metadatas, configuration=c)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"label": "label0", "page": 0})
|
||||
]
|
||||
|
||||
|
||||
def test_infinispanvs_with_id() -> None:
|
||||
"""Test with ids"""
|
||||
ids = ["id_" + str(i) for i in range(len(fake_texts))]
|
||||
docsearch = _infinispanvs_from_texts(ids=ids)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_infinispan_with_score() -> None:
|
||||
"""Test end to end construction and search with scores and IDs."""
|
||||
_infinispan_setup()
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = _infinispanvs_from_texts(metadatas=metadatas)
|
||||
output = docsearch.similarity_search_with_score("foo", k=3)
|
||||
docs = [o[0] for o in output]
|
||||
scores = [o[1] for o in output]
|
||||
assert docs == [
|
||||
Document(page_content="foo", metadata={"page": 0}),
|
||||
Document(page_content="bar", metadata={"page": 1}),
|
||||
Document(page_content="baz", metadata={"page": 2}),
|
||||
]
|
||||
assert scores[0] >= scores[1] >= scores[2]
|
||||
|
||||
|
||||
def test_infinispan_add_texts() -> None:
|
||||
"""Test end to end construction and MRR search."""
|
||||
_infinispan_setup()
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = _infinispanvs_from_texts(metadatas=metadatas)
|
||||
|
||||
docsearch.add_texts(texts, metadatas)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=10)
|
||||
assert len(output) == 6
|
||||
|
||||
|
||||
def test_infinispan_no_clear_old() -> None:
|
||||
"""Test end to end construction and MRR search."""
|
||||
_infinispan_setup()
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = _infinispanvs_from_texts(metadatas=metadatas)
|
||||
del docsearch
|
||||
docsearch = _infinispanvs_from_texts(metadatas=metadatas, clear_old=False)
|
||||
output = docsearch.similarity_search("foo", k=10)
|
||||
assert len(output) == 6
|
@@ -31,6 +31,7 @@ _EXPECTED = [
|
||||
"FAISS",
|
||||
"HanaDB",
|
||||
"Hologres",
|
||||
"InfinispanVS",
|
||||
"KDBAI",
|
||||
"Kinetica",
|
||||
"KineticaSettings",
|
||||
|
Reference in New Issue
Block a user