mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-19 11:08:55 +00:00
core, openai, standard-tests: improve OpenAI compatibility with Anthropic content blocks (#30128)
- Support thinking blocks in core's `convert_to_openai_messages` (pass through instead of error) - Ignore thinking blocks in ChatOpenAI (instead of error) - Support Anthropic-style image blocks in ChatOpenAI --- Standard integration tests include a `supports_anthropic_inputs` property which is currently enabled only for tests on `ChatAnthropic`. This test enforces compatibility with message histories of the form: ``` - system message - human message - AI message with tool calls specified only through `tool_use` content blocks - human message containing `tool_result` and an additional `text` block ``` It additionally checks support for Anthropic-style image inputs if `supports_image_inputs` is enabled. Here we change this test, such that if you enable `supports_anthropic_inputs`: - You support AI messages with text and `tool_use` content blocks - You support Anthropic-style image inputs (if `supports_image_inputs` is enabled) - You support thinking content blocks. That is, we add a test case for thinking content blocks, but we also remove the requirement of handling tool results within HumanMessages (motivated by existing agent abstractions, which should all return ToolMessage). We move that requirement to a ChatAnthropic-specific test.
This commit is contained in:
parent
b3dc66f7a3
commit
52b0570bec
@ -1191,6 +1191,8 @@ def convert_to_openai_messages(
|
||||
},
|
||||
}
|
||||
)
|
||||
elif block.get("type") == "thinking":
|
||||
content.append(block)
|
||||
else:
|
||||
err = (
|
||||
f"Unrecognized content block at "
|
||||
|
@ -832,6 +832,18 @@ def test_convert_to_openai_messages_anthropic() -> None:
|
||||
]
|
||||
assert result == expected
|
||||
|
||||
# Test thinking blocks (pass through)
|
||||
thinking_block = {
|
||||
"signature": "abc123",
|
||||
"thinking": "Thinking text.",
|
||||
"type": "thinking",
|
||||
}
|
||||
text_block = {"text": "Response text.", "type": "text"}
|
||||
messages = [AIMessage([thinking_block, text_block])]
|
||||
result = convert_to_openai_messages(messages)
|
||||
expected = [{"role": "assistant", "content": [thinking_block, text_block]}]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_convert_to_openai_messages_bedrock_converse_image() -> None:
|
||||
image_data = create_image_data()
|
||||
|
@ -4,6 +4,7 @@ import json
|
||||
from base64 import b64encode
|
||||
from typing import List, Optional
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
import requests
|
||||
from anthropic import BadRequestError
|
||||
@ -768,3 +769,64 @@ def test_structured_output_thinking_force_tool_use() -> None:
|
||||
)
|
||||
with pytest.raises(BadRequestError):
|
||||
llm.invoke("Generate a username for Sally with green hair")
|
||||
|
||||
|
||||
def test_image_tool_calling() -> None:
|
||||
"""Test tool calling with image inputs."""
|
||||
|
||||
class color_picker(BaseModel):
|
||||
"""Input your fav color and get a random fact about it."""
|
||||
|
||||
fav_color: str
|
||||
|
||||
human_content: List[dict] = [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "what's your favorite color in this image",
|
||||
},
|
||||
]
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
image_data = b64encode(httpx.get(image_url).content).decode("utf-8")
|
||||
human_content.append(
|
||||
{
|
||||
"type": "image",
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": "image/jpeg",
|
||||
"data": image_data,
|
||||
},
|
||||
}
|
||||
)
|
||||
messages = [
|
||||
SystemMessage("you're a good assistant"),
|
||||
HumanMessage(human_content), # type: ignore[arg-type]
|
||||
AIMessage(
|
||||
[
|
||||
{"type": "text", "text": "Hmm let me think about that"},
|
||||
{
|
||||
"type": "tool_use",
|
||||
"input": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
]
|
||||
),
|
||||
HumanMessage(
|
||||
[
|
||||
{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": "foo",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
|
||||
}
|
||||
],
|
||||
"is_error": False,
|
||||
},
|
||||
{"type": "text", "text": "what's my sister's favorite color"},
|
||||
]
|
||||
),
|
||||
]
|
||||
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
|
||||
llm.bind_tools([color_picker]).invoke(messages)
|
||||
|
@ -186,15 +186,38 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
def _format_message_content(content: Any) -> Any:
|
||||
"""Format message content."""
|
||||
if content and isinstance(content, list):
|
||||
# Remove unexpected block types
|
||||
formatted_content = []
|
||||
for block in content:
|
||||
# Remove unexpected block types
|
||||
if (
|
||||
isinstance(block, dict)
|
||||
and "type" in block
|
||||
and block["type"] == "tool_use"
|
||||
and block["type"] in ("tool_use", "thinking")
|
||||
):
|
||||
continue
|
||||
# Anthropic image blocks
|
||||
elif (
|
||||
isinstance(block, dict)
|
||||
and block.get("type") == "image"
|
||||
and (source := block.get("source"))
|
||||
and isinstance(source, dict)
|
||||
):
|
||||
if source.get("type") == "base64" and (
|
||||
(media_type := source.get("media_type"))
|
||||
and (data := source.get("data"))
|
||||
):
|
||||
formatted_content.append(
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:{media_type};base64,{data}"},
|
||||
}
|
||||
)
|
||||
elif source.get("type") == "url" and (url := source.get("url")):
|
||||
formatted_content.append(
|
||||
{"type": "image_url", "image_url": {"url": url}}
|
||||
)
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
formatted_content.append(block)
|
||||
else:
|
||||
|
@ -29,6 +29,10 @@ class TestOpenAIStandard(ChatModelIntegrationTests):
|
||||
def supports_json_mode(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def supported_usage_metadata_details(
|
||||
self,
|
||||
|
@ -1960,7 +1960,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
set the ``supports_anthropic_inputs`` property to False.
|
||||
""" # noqa: E501
|
||||
if not self.supports_anthropic_inputs:
|
||||
return
|
||||
pytest.skip("Model does not explicitly support Anthropic inputs.")
|
||||
|
||||
class color_picker(BaseModelV1):
|
||||
"""Input your fav color and get a random fact about it."""
|
||||
@ -1998,26 +1998,55 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
],
|
||||
tool_calls=[
|
||||
{
|
||||
"name": "color_picker",
|
||||
"args": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"type": "tool_call",
|
||||
}
|
||||
],
|
||||
),
|
||||
ToolMessage("That's a great pick!", tool_call_id="foo"),
|
||||
]
|
||||
response = model.bind_tools([color_picker]).invoke(messages)
|
||||
assert isinstance(response, AIMessage)
|
||||
|
||||
# Test thinking blocks
|
||||
messages = [
|
||||
HumanMessage(
|
||||
[
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Hello",
|
||||
},
|
||||
]
|
||||
),
|
||||
AIMessage(
|
||||
[
|
||||
{
|
||||
"type": "thinking",
|
||||
"thinking": "I'm thinking...",
|
||||
"signature": "abc123",
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Hello, how are you?",
|
||||
},
|
||||
]
|
||||
),
|
||||
HumanMessage(
|
||||
[
|
||||
{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": "foo",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
|
||||
}
|
||||
],
|
||||
"is_error": False,
|
||||
"text": "Well, thanks.",
|
||||
},
|
||||
{"type": "text", "text": "what's my sister's favorite color"},
|
||||
]
|
||||
),
|
||||
]
|
||||
model.bind_tools([color_picker]).invoke(messages)
|
||||
response = model.invoke(messages)
|
||||
assert isinstance(response, AIMessage)
|
||||
|
||||
def test_tool_message_error_status(
|
||||
self, model: BaseChatModel, my_adder_tool: BaseTool
|
||||
|
Loading…
Reference in New Issue
Block a user