diff --git a/docs/docs/integrations/vectorstores/matchingengine.ipynb b/docs/docs/integrations/vectorstores/google_vertex_ai_vector_search.ipynb similarity index 100% rename from docs/docs/integrations/vectorstores/matchingengine.ipynb rename to docs/docs/integrations/vectorstores/google_vertex_ai_vector_search.ipynb diff --git a/docs/vercel.json b/docs/vercel.json index c7de606721f..025c56cdb69 100644 --- a/docs/vercel.json +++ b/docs/vercel.json @@ -504,6 +504,10 @@ "source": "/docs/integrations/vectorstores/async_faiss", "destination": "/docs/integrations/vectorstores/faiss_async" }, + { + "source": "/docs/integrations/vectorstores/matchingengine", + "destination": "/docs/integrations/vectorstores/google_vertex_ai_vector_search" + }, { "source": "/docs/integrations/cerebriumai", "destination": "/docs/integrations/providers/cerebriumai" diff --git a/libs/langchain/langchain/vectorstores/matching_engine.py b/libs/langchain/langchain/vectorstores/matching_engine.py index 161e41bd5ec..a480580a760 100644 --- a/libs/langchain/langchain/vectorstores/matching_engine.py +++ b/libs/langchain/langchain/vectorstores/matching_engine.py @@ -26,7 +26,7 @@ logger = logging.getLogger() class MatchingEngine(VectorStore): - """`Google Vertex AI Matching Engine` vector store. + """`Google Vertex AI Vector Search` (previously Matching Engine) vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. @@ -34,7 +34,7 @@ class MatchingEngine(VectorStore): An existing Index and corresponding Endpoint are preconditions for using this module. - See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb + See usage in docs/integrations/vectorstores/google_vertex_ai_vector_search.ipynb Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time @@ -50,7 +50,8 @@ class MatchingEngine(VectorStore): gcs_bucket_name: str, credentials: Optional[Credentials] = None, ): - """Vertex Matching Engine implementation of the vector store. + """Google Vertex AI Vector Search (previously Matching Engine) + implementation of the vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. @@ -59,7 +60,7 @@ class MatchingEngine(VectorStore): using this module. See usage in - docs/modules/indexes/vectorstores/examples/matchingengine.ipynb. + docs/integrations/vectorstores/google_vertex_ai_vector_search.ipynb. Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time