mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-30 10:23:30 +00:00
feat: FastEmbed embedding provider (#13109)
## Description: This PR intends to add [Qdrant/FastEmbed](https://qdrant.github.io/fastembed/) as a local embeddings provider, associated tests and documentation. **Documentation preview:** https://langchain-git-fork-anush008-master-langchain.vercel.app/docs/integrations/text_embedding/fastembed --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
parent
b0e8cbe0b3
commit
52f34de9b7
154
docs/docs/integrations/text_embedding/fastembed.ipynb
Normal file
154
docs/docs/integrations/text_embedding/fastembed.ipynb
Normal file
@ -0,0 +1,154 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Qdrant FastEmbed\n",
|
||||
"\n",
|
||||
"[FastEmbed](https://qdrant.github.io/fastembed/) is a lightweight, fast, Python library built for embedding generation. \n",
|
||||
"\n",
|
||||
"- Quantized model weights\n",
|
||||
"- ONNX Runtime, no PyTorch dependency\n",
|
||||
"- CPU-first design\n",
|
||||
"- Data-parallelism for encoding of large datasets."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "2a773d8d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dependencies\n",
|
||||
"\n",
|
||||
"To use FastEmbed with LangChain, install the `fastembed` Python package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "91ea14ce-831d-409a-a88f-30353acdabd1",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install fastembed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "426f1156",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "3f5dc9d7-65e3-4b5b-9086-3327d016cfe0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings.fastembed import FastEmbedEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiating FastEmbed\n",
|
||||
" \n",
|
||||
"### Parameters\n",
|
||||
"- `model_name: str` (default: \"BAAI/bge-small-en-v1.5\")\n",
|
||||
" > Name of the FastEmbedding model to use. You can find the list of supported models [here](https://qdrant.github.io/fastembed/examples/Supported_Models/).\n",
|
||||
"\n",
|
||||
"- `max_length: int` (default: 512)\n",
|
||||
" > The maximum number of tokens. Unknown behavior for values > 512.\n",
|
||||
"\n",
|
||||
"- `cache_dir: Optional[str]`\n",
|
||||
" > The path to the cache directory. Defaults to `local_cache` in the parent directory.\n",
|
||||
"\n",
|
||||
"- `threads: Optional[int]`\n",
|
||||
" > The number of threads a single onnxruntime session can use. Defaults to None.\n",
|
||||
"\n",
|
||||
"- `doc_embed_type: Literal[\"default\", \"passage\"]` (default: \"default\")\n",
|
||||
" > \"default\": Uses FastEmbed's default embedding method.\n",
|
||||
" \n",
|
||||
" > \"passage\": Prefixes the text with \"passage\" before embedding."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6fb585dd",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = FastEmbedEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"### Generating document embeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"document_embeddings = embeddings.embed_documents([\"This is a document\", \"This is some other document\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generating query embeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_embeddings = embeddings.embed_query(\"This is a query\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -32,6 +32,7 @@ from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
|
||||
from langchain.embeddings.embaas import EmbaasEmbeddings
|
||||
from langchain.embeddings.ernie import ErnieEmbeddings
|
||||
from langchain.embeddings.fake import DeterministicFakeEmbedding, FakeEmbeddings
|
||||
from langchain.embeddings.fastembed import FastEmbedEmbeddings
|
||||
from langchain.embeddings.google_palm import GooglePalmEmbeddings
|
||||
from langchain.embeddings.gpt4all import GPT4AllEmbeddings
|
||||
from langchain.embeddings.gradient_ai import GradientEmbeddings
|
||||
@ -77,6 +78,7 @@ __all__ = [
|
||||
"ClarifaiEmbeddings",
|
||||
"CohereEmbeddings",
|
||||
"ElasticsearchEmbeddings",
|
||||
"FastEmbedEmbeddings",
|
||||
"HuggingFaceEmbeddings",
|
||||
"HuggingFaceInferenceAPIEmbeddings",
|
||||
"GradientEmbeddings",
|
||||
|
108
libs/langchain/langchain/embeddings/fastembed.py
Normal file
108
libs/langchain/langchain/embeddings/fastembed.py
Normal file
@ -0,0 +1,108 @@
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from langchain.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
from langchain.schema.embeddings import Embeddings
|
||||
|
||||
|
||||
class FastEmbedEmbeddings(BaseModel, Embeddings):
|
||||
"""Qdrant FastEmbedding models.
|
||||
FastEmbed is a lightweight, fast, Python library built for embedding generation.
|
||||
See more documentation at:
|
||||
* https://github.com/qdrant/fastembed/
|
||||
* https://qdrant.github.io/fastembed/
|
||||
|
||||
To use this class, you must install the `fastembed` Python package.
|
||||
|
||||
`pip install fastembed`
|
||||
Example:
|
||||
from langchain.embeddings import FastEmbedEmbeddings
|
||||
fastembed = FastEmbedEmbeddings()
|
||||
"""
|
||||
|
||||
model_name: str = "BAAI/bge-small-en-v1.5"
|
||||
"""Name of the FastEmbedding model to use
|
||||
Defaults to "BAAI/bge-small-en-v1.5"
|
||||
Find the list of supported models at
|
||||
https://qdrant.github.io/fastembed/examples/Supported_Models/
|
||||
"""
|
||||
|
||||
max_length: int = 512
|
||||
"""The maximum number of tokens. Defaults to 512.
|
||||
Unknown behavior for values > 512.
|
||||
"""
|
||||
|
||||
cache_dir: Optional[str]
|
||||
"""The path to the cache directory.
|
||||
Defaults to `local_cache` in the parent directory
|
||||
"""
|
||||
|
||||
threads: Optional[int]
|
||||
"""The number of threads single onnxruntime session can use.
|
||||
Defaults to None
|
||||
"""
|
||||
|
||||
doc_embed_type: Literal["default", "passage"] = "default"
|
||||
"""Type of embedding to use for documents
|
||||
"default": Uses FastEmbed's default embedding method
|
||||
"passage": Prefixes the text with "passage" before embedding.
|
||||
"""
|
||||
|
||||
_model: Any # : :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that FastEmbed has been installed."""
|
||||
try:
|
||||
from fastembed.embedding import FlagEmbedding
|
||||
|
||||
model_name = values.get("model_name")
|
||||
max_length = values.get("max_length")
|
||||
cache_dir = values.get("cache_dir")
|
||||
threads = values.get("threads")
|
||||
values["_model"] = FlagEmbedding(
|
||||
model_name=model_name,
|
||||
max_length=max_length,
|
||||
cache_dir=cache_dir,
|
||||
threads=threads,
|
||||
)
|
||||
except ImportError as ie:
|
||||
raise ImportError(
|
||||
"Could not import 'fastembed' Python package. "
|
||||
"Please install it with `pip install fastembed`."
|
||||
) from ie
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Generate embeddings for documents using FastEmbed.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings: List[np.ndarray]
|
||||
if self.doc_embed_type == "passage":
|
||||
embeddings = self._model.passage_embed(texts)
|
||||
else:
|
||||
embeddings = self._model.embed(texts)
|
||||
return [e.tolist() for e in embeddings]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Generate query embeddings using FastEmbed.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
query_embeddings: np.ndarray = next(self._model.query_embed(text))
|
||||
return query_embeddings.tolist()
|
@ -0,0 +1,76 @@
|
||||
"""Test FastEmbed embeddings."""
|
||||
import pytest
|
||||
|
||||
from langchain.embeddings.fastembed import FastEmbedEmbeddings
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
||||
)
|
||||
@pytest.mark.parametrize("max_length", [50, 512])
|
||||
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
||||
@pytest.mark.parametrize("threads", [0, 10])
|
||||
def test_fastembed_embedding_documents(
|
||||
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for documents."""
|
||||
documents = ["foo bar", "bar foo"]
|
||||
embedding = FastEmbedEmbeddings(
|
||||
model_name=model_name,
|
||||
max_length=max_length,
|
||||
doc_embed_type=doc_embed_type,
|
||||
threads=threads,
|
||||
)
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 384
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
||||
)
|
||||
@pytest.mark.parametrize("max_length", [50, 512])
|
||||
def test_fastembed_embedding_query(model_name: str, max_length: int) -> None:
|
||||
"""Test fastembed embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 384
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
||||
)
|
||||
@pytest.mark.parametrize("max_length", [50, 512])
|
||||
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
|
||||
@pytest.mark.parametrize("threads", [0, 10])
|
||||
async def test_fastembed_async_embedding_documents(
|
||||
model_name: str, max_length: int, doc_embed_type: str, threads: int
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for documents."""
|
||||
documents = ["foo bar", "bar foo"]
|
||||
embedding = FastEmbedEmbeddings(
|
||||
model_name=model_name,
|
||||
max_length=max_length,
|
||||
doc_embed_type=doc_embed_type,
|
||||
threads=threads,
|
||||
)
|
||||
output = await embedding.aembed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 384
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
|
||||
)
|
||||
@pytest.mark.parametrize("max_length", [50, 512])
|
||||
async def test_fastembed_async_embedding_query(
|
||||
model_name: str, max_length: int
|
||||
) -> None:
|
||||
"""Test fastembed embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length)
|
||||
output = await embedding.aembed_query(document)
|
||||
assert len(output) == 384
|
@ -7,6 +7,7 @@ EXPECTED_ALL = [
|
||||
"ClarifaiEmbeddings",
|
||||
"CohereEmbeddings",
|
||||
"ElasticsearchEmbeddings",
|
||||
"FastEmbedEmbeddings",
|
||||
"HuggingFaceEmbeddings",
|
||||
"HuggingFaceInferenceAPIEmbeddings",
|
||||
"GradientEmbeddings",
|
||||
|
Loading…
Reference in New Issue
Block a user