mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	Add rag google vertex ai search template (#13294)
- **Description:** This is a template demonstrating how to utilize Google Vertex AI Search in conjunction with ChatVertexAI()
This commit is contained in:
		
				
					committed by
					
						
						GitHub
					
				
			
			
				
	
			
			
			
						parent
						
							9024593468
						
					
				
				
					commit
					545b76b0fd
				
			
							
								
								
									
										21
									
								
								templates/rag-google-cloud-vertexai-search/LICENSE
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								templates/rag-google-cloud-vertexai-search/LICENSE
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,21 @@
 | 
				
			|||||||
 | 
					MIT License
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Copyright (c) 2023 LangChain, Inc.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
				
			||||||
 | 
					of this software and associated documentation files (the "Software"), to deal
 | 
				
			||||||
 | 
					in the Software without restriction, including without limitation the rights
 | 
				
			||||||
 | 
					to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
				
			||||||
 | 
					copies of the Software, and to permit persons to whom the Software is
 | 
				
			||||||
 | 
					furnished to do so, subject to the following conditions:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The above copyright notice and this permission notice shall be included in all
 | 
				
			||||||
 | 
					copies or substantial portions of the Software.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
				
			||||||
 | 
					IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
				
			||||||
 | 
					FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
				
			||||||
 | 
					AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
				
			||||||
 | 
					LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
				
			||||||
 | 
					OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
				
			||||||
 | 
					SOFTWARE.
 | 
				
			||||||
							
								
								
									
										88
									
								
								templates/rag-google-cloud-vertexai-search/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										88
									
								
								templates/rag-google-cloud-vertexai-search/README.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,88 @@
 | 
				
			|||||||
 | 
					# rag-google-cloud-vertexai-search
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This template is an application that utilizes Google Vertex AI Search, a machine learning powered search service, and
 | 
				
			||||||
 | 
					PaLM 2 for Chat (chat-bison). The application uses a Retrieval chain to answer questions based on your documents.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For more context on building RAG applications with Vertex AI Search,
 | 
				
			||||||
 | 
					check [here](https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Environment Setup
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Before using this template, please ensure that you are authenticated with Vertex AI Search. See the authentication
 | 
				
			||||||
 | 
					guide: [here](https://cloud.google.com/generative-ai-app-builder/docs/authentication).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					You will also need to create:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- A search application [here](https://cloud.google.com/generative-ai-app-builder/docs/create-engine-es)
 | 
				
			||||||
 | 
					- A data store [here](https://cloud.google.com/generative-ai-app-builder/docs/create-data-store-es)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					A suitable dataset to test this template with is the Alphabet Earnings Reports, which you can
 | 
				
			||||||
 | 
					find [here](https://abc.xyz/investor/). The data is also available
 | 
				
			||||||
 | 
					at `gs://cloud-samples-data/gen-app-builder/search/alphabet-investor-pdfs`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Set the following environment variables:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* `GOOGLE_CLOUD_PROJECT_ID` - Your Google Cloud project ID.
 | 
				
			||||||
 | 
					* `DATA_STORE_ID` - The ID of the data store in Vertex AI Search, which is a 36-character alphanumeric value found on
 | 
				
			||||||
 | 
					  the data store details page.
 | 
				
			||||||
 | 
					* `MODEL_TYPE` - The model type for Vertex AI Search.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Usage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To use this package, you should first have the LangChain CLI installed:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					pip install -U langchain-cli
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To create a new LangChain project and install this as the only package, you can do:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					langchain app new my-app --package rag-google-cloud-vertexai-search
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If you want to add this to an existing project, you can just run:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					langchain app add rag-google-cloud-vertexai-search
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					And add the following code to your `server.py` file:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					from rag_google_cloud_vertexai_search.chain import chain as rag_google_cloud_vertexai_search_chain
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					add_routes(app, rag_google_cloud_vertexai_search_chain, path="/rag-google-cloud-vertexai-search")
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					(Optional) Let's now configure LangSmith.
 | 
				
			||||||
 | 
					LangSmith will help us trace, monitor and debug LangChain applications.
 | 
				
			||||||
 | 
					LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
 | 
				
			||||||
 | 
					If you don't have access, you can skip this section
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					export LANGCHAIN_TRACING_V2=true
 | 
				
			||||||
 | 
					export LANGCHAIN_API_KEY=<your-api-key>
 | 
				
			||||||
 | 
					export LANGCHAIN_PROJECT=<your-project>  # if not specified, defaults to "default"
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If you are inside this directory, then you can spin up a LangServe instance directly by:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					langchain serve
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This will start the FastAPI app with a server running locally at
 | 
				
			||||||
 | 
					[http://localhost:8000](http://localhost:8000)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
 | 
				
			||||||
 | 
					We can access the playground
 | 
				
			||||||
 | 
					at [http://127.0.0.1:8000/rag-google-cloud-vertexai-search/playground](http://127.0.0.1:8000/rag-google-cloud-vertexai-search/playground)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We can access the template from code with:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					from langserve.client import RemoteRunnable
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					runnable = RemoteRunnable("http://localhost:8000/rag-google-cloud-vertexai-search")
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
							
								
								
									
										5
									
								
								templates/rag-google-cloud-vertexai-search/main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								templates/rag-google-cloud-vertexai-search/main.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,5 @@
 | 
				
			|||||||
 | 
					from rag_google_cloud_vertexai_search.chain import chain
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    query = "Who is the CEO of Google Cloud?"
 | 
				
			||||||
 | 
					    print(chain.invoke(query))
 | 
				
			||||||
							
								
								
									
										2191
									
								
								templates/rag-google-cloud-vertexai-search/poetry.lock
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										2191
									
								
								templates/rag-google-cloud-vertexai-search/poetry.lock
									
									
									
										generated
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										27
									
								
								templates/rag-google-cloud-vertexai-search/pyproject.toml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								templates/rag-google-cloud-vertexai-search/pyproject.toml
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,27 @@
 | 
				
			|||||||
 | 
					[tool.poetry]
 | 
				
			||||||
 | 
					name = "rag-google-cloud-vertexai-search"
 | 
				
			||||||
 | 
					version = "0.0.1"
 | 
				
			||||||
 | 
					description = ""
 | 
				
			||||||
 | 
					authors = ["Juan Calvo <juan.calvo@datatonic.com>"]
 | 
				
			||||||
 | 
					readme = "README.md"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[tool.poetry.dependencies]
 | 
				
			||||||
 | 
					python = ">=3.8.1,<4.0"
 | 
				
			||||||
 | 
					langchain = ">=0.0.333"
 | 
				
			||||||
 | 
					google-cloud-aiplatform = ">=1.35.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[tool.poetry.group.dev.dependencies]
 | 
				
			||||||
 | 
					langchain-cli = ">=0.0.15"
 | 
				
			||||||
 | 
					fastapi = "^0.104.0"
 | 
				
			||||||
 | 
					sse-starlette = "^1.6.5"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[tool.langserve]
 | 
				
			||||||
 | 
					export_module = "rag_google_cloud_vertexai_search"
 | 
				
			||||||
 | 
					export_attr = "chain"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[build-system]
 | 
				
			||||||
 | 
					requires = [
 | 
				
			||||||
 | 
					    "poetry-core",
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					build-backend = "poetry.core.masonry.api"
 | 
				
			||||||
@@ -0,0 +1,50 @@
 | 
				
			|||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from langchain.chat_models import ChatVertexAI
 | 
				
			||||||
 | 
					from langchain.prompts import ChatPromptTemplate
 | 
				
			||||||
 | 
					from langchain.pydantic_v1 import BaseModel
 | 
				
			||||||
 | 
					from langchain.retrievers import GoogleVertexAISearchRetriever
 | 
				
			||||||
 | 
					from langchain.schema.output_parser import StrOutputParser
 | 
				
			||||||
 | 
					from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Get region and profile from env
 | 
				
			||||||
 | 
					project_id = os.environ.get("GOOGLE_CLOUD_PROJECT_ID")
 | 
				
			||||||
 | 
					data_store_id = os.environ.get("DATA_STORE_ID")
 | 
				
			||||||
 | 
					model_type = os.environ.get("MODEL_TYPE")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if not data_store_id:
 | 
				
			||||||
 | 
					    raise ValueError(
 | 
				
			||||||
 | 
					        "No value provided in env variable 'DATA_STORE_ID'. "
 | 
				
			||||||
 | 
					        "A  data store is required to run this application."
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set LLM and embeddings
 | 
				
			||||||
 | 
					model = ChatVertexAI(model_name=model_type, temperature=0.0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Create Kendra retriever
 | 
				
			||||||
 | 
					retriever = GoogleVertexAISearchRetriever(
 | 
				
			||||||
 | 
					    project_id=project_id, search_engine_id=data_store_id
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# RAG prompt
 | 
				
			||||||
 | 
					template = """Answer the question based only on the following context:
 | 
				
			||||||
 | 
					{context}
 | 
				
			||||||
 | 
					Question: {question}
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					prompt = ChatPromptTemplate.from_template(template)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# RAG
 | 
				
			||||||
 | 
					chain = (
 | 
				
			||||||
 | 
					    RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
 | 
				
			||||||
 | 
					    | prompt
 | 
				
			||||||
 | 
					    | model
 | 
				
			||||||
 | 
					    | StrOutputParser()
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Add typing for input
 | 
				
			||||||
 | 
					class Question(BaseModel):
 | 
				
			||||||
 | 
					    __root__: str
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					chain = chain.with_types(input_type=Question)
 | 
				
			||||||
		Reference in New Issue
	
	Block a user