mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-29 02:58:06 +00:00
Add rag google vertex ai search template (#13294)
- **Description:** This is a template demonstrating how to utilize Google Vertex AI Search in conjunction with ChatVertexAI()
This commit is contained in:
parent
9024593468
commit
545b76b0fd
21
templates/rag-google-cloud-vertexai-search/LICENSE
Normal file
21
templates/rag-google-cloud-vertexai-search/LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 LangChain, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
88
templates/rag-google-cloud-vertexai-search/README.md
Normal file
88
templates/rag-google-cloud-vertexai-search/README.md
Normal file
@ -0,0 +1,88 @@
|
||||
# rag-google-cloud-vertexai-search
|
||||
|
||||
This template is an application that utilizes Google Vertex AI Search, a machine learning powered search service, and
|
||||
PaLM 2 for Chat (chat-bison). The application uses a Retrieval chain to answer questions based on your documents.
|
||||
|
||||
For more context on building RAG applications with Vertex AI Search,
|
||||
check [here](https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction).
|
||||
|
||||
## Environment Setup
|
||||
|
||||
Before using this template, please ensure that you are authenticated with Vertex AI Search. See the authentication
|
||||
guide: [here](https://cloud.google.com/generative-ai-app-builder/docs/authentication).
|
||||
|
||||
You will also need to create:
|
||||
|
||||
- A search application [here](https://cloud.google.com/generative-ai-app-builder/docs/create-engine-es)
|
||||
- A data store [here](https://cloud.google.com/generative-ai-app-builder/docs/create-data-store-es)
|
||||
|
||||
A suitable dataset to test this template with is the Alphabet Earnings Reports, which you can
|
||||
find [here](https://abc.xyz/investor/). The data is also available
|
||||
at `gs://cloud-samples-data/gen-app-builder/search/alphabet-investor-pdfs`.
|
||||
|
||||
Set the following environment variables:
|
||||
|
||||
* `GOOGLE_CLOUD_PROJECT_ID` - Your Google Cloud project ID.
|
||||
* `DATA_STORE_ID` - The ID of the data store in Vertex AI Search, which is a 36-character alphanumeric value found on
|
||||
the data store details page.
|
||||
* `MODEL_TYPE` - The model type for Vertex AI Search.
|
||||
|
||||
## Usage
|
||||
|
||||
To use this package, you should first have the LangChain CLI installed:
|
||||
|
||||
```shell
|
||||
pip install -U langchain-cli
|
||||
```
|
||||
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package rag-google-cloud-vertexai-search
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add rag-google-cloud-vertexai-search
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
|
||||
```python
|
||||
from rag_google_cloud_vertexai_search.chain import chain as rag_google_cloud_vertexai_search_chain
|
||||
|
||||
add_routes(app, rag_google_cloud_vertexai_search_chain, path="/rag-google-cloud-vertexai-search")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||
If you don't have access, you can skip this section
|
||||
|
||||
```shell
|
||||
export LANGCHAIN_TRACING_V2=true
|
||||
export LANGCHAIN_API_KEY=<your-api-key>
|
||||
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||
```
|
||||
|
||||
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||
|
||||
```shell
|
||||
langchain serve
|
||||
```
|
||||
|
||||
This will start the FastAPI app with a server running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||
We can access the playground
|
||||
at [http://127.0.0.1:8000/rag-google-cloud-vertexai-search/playground](http://127.0.0.1:8000/rag-google-cloud-vertexai-search/playground)
|
||||
|
||||
We can access the template from code with:
|
||||
|
||||
```python
|
||||
from langserve.client import RemoteRunnable
|
||||
|
||||
runnable = RemoteRunnable("http://localhost:8000/rag-google-cloud-vertexai-search")
|
||||
```
|
5
templates/rag-google-cloud-vertexai-search/main.py
Normal file
5
templates/rag-google-cloud-vertexai-search/main.py
Normal file
@ -0,0 +1,5 @@
|
||||
from rag_google_cloud_vertexai_search.chain import chain
|
||||
|
||||
if __name__ == "__main__":
|
||||
query = "Who is the CEO of Google Cloud?"
|
||||
print(chain.invoke(query))
|
2191
templates/rag-google-cloud-vertexai-search/poetry.lock
generated
Normal file
2191
templates/rag-google-cloud-vertexai-search/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
27
templates/rag-google-cloud-vertexai-search/pyproject.toml
Normal file
27
templates/rag-google-cloud-vertexai-search/pyproject.toml
Normal file
@ -0,0 +1,27 @@
|
||||
[tool.poetry]
|
||||
name = "rag-google-cloud-vertexai-search"
|
||||
version = "0.0.1"
|
||||
description = ""
|
||||
authors = ["Juan Calvo <juan.calvo@datatonic.com>"]
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.8.1,<4.0"
|
||||
langchain = ">=0.0.333"
|
||||
google-cloud-aiplatform = ">=1.35.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
langchain-cli = ">=0.0.15"
|
||||
fastapi = "^0.104.0"
|
||||
sse-starlette = "^1.6.5"
|
||||
|
||||
[tool.langserve]
|
||||
export_module = "rag_google_cloud_vertexai_search"
|
||||
export_attr = "chain"
|
||||
|
||||
[build-system]
|
||||
requires = [
|
||||
"poetry-core",
|
||||
]
|
||||
build-backend = "poetry.core.masonry.api"
|
@ -0,0 +1,50 @@
|
||||
import os
|
||||
|
||||
from langchain.chat_models import ChatVertexAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.retrievers import GoogleVertexAISearchRetriever
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
|
||||
# Get region and profile from env
|
||||
project_id = os.environ.get("GOOGLE_CLOUD_PROJECT_ID")
|
||||
data_store_id = os.environ.get("DATA_STORE_ID")
|
||||
model_type = os.environ.get("MODEL_TYPE")
|
||||
|
||||
if not data_store_id:
|
||||
raise ValueError(
|
||||
"No value provided in env variable 'DATA_STORE_ID'. "
|
||||
"A data store is required to run this application."
|
||||
)
|
||||
|
||||
# Set LLM and embeddings
|
||||
model = ChatVertexAI(model_name=model_type, temperature=0.0)
|
||||
|
||||
# Create Kendra retriever
|
||||
retriever = GoogleVertexAISearchRetriever(
|
||||
project_id=project_id, search_engine_id=data_store_id
|
||||
)
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Loading…
Reference in New Issue
Block a user