community[patch]: update OctoAI endpoint to subclass BaseOpenAI (#19757)

This PR updates OctoAIEndpoint LLM to subclass BaseOpenAI as OctoAI is
an OpenAI-compatible service. The documentation and tests have also been
updated.
This commit is contained in:
Sevin F. Varoglu
2024-04-17 03:32:20 +03:00
committed by GitHub
parent 0c95ddbcd8
commit 54d388d898
4 changed files with 107 additions and 214 deletions

View File

@@ -1,166 +1,117 @@
from typing import Any, Dict, List, Mapping, Optional
from typing import Any, Dict
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.llms.utils import enforce_stop_tokens
from langchain_community.llms.openai import BaseOpenAI
from langchain_community.utils.openai import is_openai_v1
DEFAULT_BASE_URL = "https://text.octoai.run/v1/"
DEFAULT_MODEL = "codellama-7b-instruct"
class OctoAIEndpoint(LLM):
"""OctoAI LLM Endpoints.
class OctoAIEndpoint(BaseOpenAI):
"""OctoAI LLM Endpoints - OpenAI compatible.
OctoAIEndpoint is a class to interact with OctoAI
Compute Service large language model endpoints.
OctoAIEndpoint is a class to interact with OctoAI Compute Service large
language model endpoints.
To use, you should have the ``octoai`` python package installed, and the
environment variable ``OCTOAI_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
To use, you should have the environment variable ``OCTOAI_API_TOKEN`` set
with your API token, or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
OctoAIEndpoint(
octoai_api_token="octoai-api-key",
endpoint_url="https://text.octoai.run/v1/chat/completions",
model_kwargs={
"model": "llama-2-13b-chat-fp16",
"messages": [
{
"role": "system",
"content": "Below is an instruction that describes a task.
Write a response that completes the request."
}
],
"stream": False,
"max_tokens": 256,
"presence_penalty": 0,
"temperature": 0.1,
"top_p": 0.9
}
llm = OctoAIEndpoint(
model="llama-2-13b-chat-fp16",
max_tokens=200,
presence_penalty=0,
temperature=0.1,
top_p=0.9,
)
"""
endpoint_url: Optional[str] = None
"""Endpoint URL to use."""
"""Key word arguments to pass to the model."""
octoai_api_base: str = Field(default=DEFAULT_BASE_URL)
octoai_api_token: SecretStr = Field(default=None)
model_name: str = Field(default=DEFAULT_MODEL)
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
octoai_api_token: Optional[str] = None
"""OCTOAI API Token"""
streaming: bool = False
"""Whether to generate a stream of tokens asynchronously"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
octoai_api_token = get_from_dict_or_env(
values, "octoai_api_token", "OCTOAI_API_TOKEN"
)
values["endpoint_url"] = get_from_dict_or_env(
values, "endpoint_url", "ENDPOINT_URL"
)
values["octoai_api_token"] = octoai_api_token
return values
@classmethod
def is_lc_serializable(cls) -> bool:
return False
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": _model_kwargs},
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
params: Dict[str, Any] = {
"model": self.model_name,
**self._default_params,
}
if not is_openai_v1():
params.update(
{
"api_key": self.octoai_api_token.get_secret_value(),
"api_base": self.octoai_api_base,
}
)
return {**params, **super()._invocation_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "octoai_endpoint"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to OctoAI's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
"""
_model_kwargs = self.model_kwargs or {}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["octoai_api_base"] = get_from_dict_or_env(
values,
"octoai_api_base",
"OCTOAI_API_BASE",
default=DEFAULT_BASE_URL,
)
values["octoai_api_token"] = convert_to_secret_str(
get_from_dict_or_env(values, "octoai_api_token", "OCTOAI_API_TOKEN")
)
values["model_name"] = get_from_dict_or_env(
values,
"model_name",
"MODEL_NAME",
default=DEFAULT_MODEL,
)
try:
from octoai import client
# Initialize the OctoAI client
octoai_client = client.Client(token=self.octoai_api_token)
if "model" in _model_kwargs:
parameter_payload = _model_kwargs
sys_msg = None
if "messages" in parameter_payload:
msgs = parameter_payload.get("messages", [])
for msg in msgs:
if msg.get("role") == "system":
sys_msg = msg.get("content")
# Reset messages list
parameter_payload["messages"] = []
# Append system message if exists
if sys_msg:
parameter_payload["messages"].append(
{"role": "system", "content": sys_msg}
)
# Append user message
parameter_payload["messages"].append(
{"role": "user", "content": prompt}
)
# Send the request using the OctoAI client
try:
output = octoai_client.infer(self.endpoint_url, parameter_payload)
if output and "choices" in output and len(output["choices"]) > 0:
text = output["choices"][0].get("message", {}).get("content")
else:
text = "Error: Invalid response format or empty choices."
except Exception as e:
text = f"Error during API call: {str(e)}"
import openai
if is_openai_v1():
client_params = {
"api_key": values["octoai_api_token"].get_secret_value(),
"base_url": values["octoai_api_base"],
}
if not values.get("client"):
values["client"] = openai.OpenAI(**client_params).completions
if not values.get("async_client"):
values["async_client"] = openai.AsyncOpenAI(
**client_params
).completions
else:
# Prepare the payload JSON
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
values["openai_api_base"] = values["octoai_api_base"]
values["openai_api_key"] = values["octoai_api_token"].get_secret_value()
values["client"] = openai.Completion
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
# Send the request using the OctoAI client
resp_json = octoai_client.infer(self.endpoint_url, parameter_payload)
text = resp_json["generated_text"]
if "endpoint_url" in values["model_kwargs"]:
raise ValueError(
"`endpoint_url` was deprecated, please use `octoai_api_base`."
)
except Exception as e:
# Handle any errors raised by the inference endpoint
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
if stop is not None:
# Apply stop tokens when making calls to OctoAI
text = enforce_stop_tokens(text, stop)
return text
return values