diff --git a/docs/extras/ecosystem/integrations/datadog.mdx b/docs/extras/ecosystem/integrations/datadog.mdx new file mode 100644 index 00000000000..59bd069c5f9 --- /dev/null +++ b/docs/extras/ecosystem/integrations/datadog.mdx @@ -0,0 +1,88 @@ +# Datadog Tracing + +>[ddtrace](https://github.com/DataDog/dd-trace-py) is a Datadog application performance monitoring (APM) library which provides an integration to monitor your LangChain application. + +Key features of the ddtrace integration for LangChain: +- Traces: Capture LangChain requests, parameters, prompt-completions, and help visualize LangChain operations. +- Metrics: Capture LangChain request latency, errors, and token/cost usage (for OpenAI LLMs and Chat Models). +- Logs: Store prompt completion data for each LangChain operation. +- Dashboard: Combine metrics, logs, and trace data into a single plane to monitor LangChain requests. +- Monitors: Provide alerts in response to spikes in LangChain request latency or error rate. + +Note: The ddtrace LangChain integration currently provides tracing for LLMs, Chat Models, Text Embedding Models, Chains, and Vectorstores. + +## Installation and Setup + +1. Enable APM and StatsD in your Datadog Agent, along with a Datadog API key. For example, in Docker: + +``` +docker run -d --cgroupns host \ + --pid host \ + -v /var/run/docker.sock:/var/run/docker.sock:ro \ + -v /proc/:/host/proc/:ro \ + -v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \ + -e DD_API_KEY= \ + -p 127.0.0.1:8126:8126/tcp \ + -p 127.0.0.1:8125:8125/udp \ + -e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \ + -e DD_APM_ENABLED=true \ + gcr.io/datadoghq/agent:latest +``` + +2. Install the Datadog APM Python library. + +``` +pip install ddtrace>=1.17 +``` + + +3. The LangChain integration can be enabled automatically when you prefix your LangChain Python application command with `ddtrace-run`: + +``` +DD_SERVICE="my-service" DD_ENV="staging" DD_API_KEY= ddtrace-run python .py +``` + +**Note**: If the Agent is using a non-default hostname or port, be sure to also set `DD_AGENT_HOST`, `DD_TRACE_AGENT_PORT`, or `DD_DOGSTATSD_PORT`. + +Additionally, the LangChain integration can be enabled programmatically by adding `patch_all()` or `patch(langchain=True)` before the first import of `langchain` in your application. + +Note that using `ddtrace-run` or `patch_all()` will also enable the `requests` and `aiohttp` integrations which trace HTTP requests to LLM providers, as well as the `openai` integration which traces requests to the OpenAI library. + +```python +from ddtrace import config, patch + +# Note: be sure to configure the integration before calling ``patch()``! +# eg. config.langchain["logs_enabled"] = True + +patch(langchain=True) + +# to trace synchronous HTTP requests +# patch(langchain=True, requests=True) + +# to trace asynchronous HTTP requests (to the OpenAI library) +# patch(langchain=True, aiohttp=True) + +# to include underlying OpenAI spans from the OpenAI integration +# patch(langchain=True, openai=True)patch_all +``` + +See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html] for more advanced usage. + + +## Configuration + +See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain] for all the available configuration options. + + +### Log Prompt & Completion Sampling + +To enable log prompt and completion sampling, set the `DD_LANGCHAIN_LOGS_ENABLED=1` environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions. + +To adjust the log sample rate, see the [APM library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain]. + +**Note**: Logs submission requires `DD_API_KEY` to be specified when running `ddtrace-run`. + + +## Troubleshooting + +Need help? Create an issue on [ddtrace](https://github.com/DataDog/dd-trace-py) or contact [Datadog support][https://docs.datadoghq.com/help/].