community: Add docstring for GLiNERLinkExtractor (#26218)

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Christophe Bornet 2024-09-10 02:27:23 +02:00 committed by GitHub
parent e235a572a0
commit 56580b5fff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -14,7 +14,117 @@ GLiNERInput = Union[str, Document]
@beta()
class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
"""Link documents with common named entities using GLiNER <https://github.com/urchade/GLiNER>."""
"""Link documents with common named entities using `GLiNER`_.
`GLiNER`_ is a Named Entity Recognition (NER) model capable of identifying any
entity type using a bidirectional transformer encoder (BERT-like).
The ``GLiNERLinkExtractor`` uses GLiNER to create links between documents that
have named entities in common.
Example::
extractor = GLiNERLinkExtractor(
labels=["Person", "Award", "Date", "Competitions", "Teams"]
)
results = extractor.extract_one("some long text...")
.. _GLiNER: https://github.com/urchade/GLiNER
.. seealso::
- :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
- :class:`How to create links between documents <langchain_core.graph_vectorstores.links.Link>`
How to link Documents on common named entities
==============================================
Preliminaries
-------------
Install the ``gliner`` package:
.. code-block:: bash
pip install -q langchain_community gliner
Usage
-----
We load the ``state_of_the_union.txt`` file, chunk it, then for each chunk we
extract named entity links and add them to the chunk.
Using extract_one()
^^^^^^^^^^^^^^^^^^^
We can use :meth:`extract_one` on a document to get the links and add the links
to the document metadata with
:meth:`~langchain_core.graph_vectorstores.links.add_links`::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.extractors import GLiNERLinkExtractor
from langchain_core.graph_vectorstores.links import add_links
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
raw_documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
ner_extractor = GLiNERLinkExtractor(["Person", "Topic"])
for document in documents:
links = ner_extractor.extract_one(document)
add_links(document, links)
print(documents[0].metadata)
.. code-block:: output
{'source': 'state_of_the_union.txt', 'links': [Link(kind='entity:Person', direction='bidir', tag='President Zelenskyy'), Link(kind='entity:Person', direction='bidir', tag='Vladimir Putin')]}
Using LinkExtractorTransformer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`,
we can simplify the link extraction::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores.extractors import (
GLiNERLinkExtractor,
LinkExtractorTransformer,
)
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
raw_documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
ner_extractor = GLiNERLinkExtractor(["Person", "Topic"])
transformer = LinkExtractorTransformer([ner_extractor])
documents = transformer.transform_documents(documents)
print(documents[0].metadata)
.. code-block:: output
{'source': 'state_of_the_union.txt', 'links': [Link(kind='entity:Person', direction='bidir', tag='President Zelenskyy'), Link(kind='entity:Person', direction='bidir', tag='Vladimir Putin')]}
The documents with named entity links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`::
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
store = CassandraGraphVectorStore.from_documents(documents=documents, embedding=...)
Args:
labels: List of kinds of entities to extract.
kind: Kind of links to produce with this extractor.
model: GLiNER model to use.
extract_kwargs: Keyword arguments to pass to GLiNER.
""" # noqa: E501
def __init__(
self,
@ -24,23 +134,6 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
model: str = "urchade/gliner_mediumv2.1",
extract_kwargs: Optional[Dict[str, Any]] = None,
):
"""Extract keywords using GLiNER.
Example:
.. code-block:: python
extractor = GLiNERLinkExtractor(
labels=["Person", "Award", "Date", "Competitions", "Teams"]
)
results = extractor.extract_one("some long text...")
Args:
labels: List of kinds of entities to extract.
kind: Kind of links to produce with this extractor.
model: GLiNER model to use.
extract_kwargs: Keyword arguments to pass to GLiNER.
"""
try:
from gliner import GLiNER