mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 09:28:48 +00:00
mistralai[patch]: Added Json Mode for ChatMistralAI (#22213)
- **Description:** Powered
[ChatMistralAI.with_structured_output](fbfed65fb1/libs/partners/mistralai/langchain_mistralai/chat_models.py (L609)
)
via json mode
- **Issue:** #22081
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
25c270b5a5
commit
577ed68b59
@ -24,6 +24,7 @@ CHAT_MODEL_FEAT_TABLE = {
|
||||
"ChatMistralAI": {
|
||||
"tool_calling": True,
|
||||
"structured_output": True,
|
||||
"json_model": True,
|
||||
"package": "langchain-mistralai",
|
||||
"link": "/docs/integrations/chat/mistralai/",
|
||||
},
|
||||
|
@ -12,6 +12,7 @@ from typing import (
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
@ -49,6 +50,10 @@ from langchain_core.messages import (
|
||||
ToolCall,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.output_parsers import (
|
||||
JsonOutputParser,
|
||||
PydanticOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
@ -608,8 +613,9 @@ class ChatMistralAI(BaseChatModel):
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Union[Dict, Type[BaseModel]],
|
||||
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal["function_calling", "json_mode"] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
@ -622,6 +628,12 @@ class ChatMistralAI(BaseChatModel):
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the OpenAI function-calling spec.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
to an OpenAI function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" then OpenAI's JSON mode will be
|
||||
used. Note that if using "json_mode" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
@ -709,10 +721,64 @@ class ChatMistralAI(BaseChatModel):
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
|
||||
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_mistralai import ChatMistralAI
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification,
|
||||
method="json_mode",
|
||||
include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_mistralai import ChatMistralAI
|
||||
|
||||
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': {
|
||||
# 'answer': 'They are both the same weight.',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
||||
# },
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
""" # noqa: E501
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"schema must be specified when method is 'function_calling'. "
|
||||
"Received None."
|
||||
)
|
||||
llm = self.bind_tools([schema], tool_choice="any")
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
@ -723,7 +789,13 @@ class ChatMistralAI(BaseChatModel):
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=key_name, first_tool_only=True
|
||||
)
|
||||
|
||||
elif method == "json_mode":
|
||||
llm = self.bind(response_format={"type": "json_object"})
|
||||
output_parser = (
|
||||
PydanticOutputParser(pydantic_object=schema)
|
||||
if is_pydantic_schema
|
||||
else JsonOutputParser()
|
||||
)
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
|
Loading…
Reference in New Issue
Block a user