mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 21:11:43 +00:00
community[minor]: Added integrations for ThirdAI's NeuralDB as a Retriever (#17334)
**Description:** Adds ThirdAI NeuralDB retriever integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval engine. We previously added a vector store integration but we think that it will be easier for our customers if they can also find us under under langchain-community/retrievers. --------- Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com> Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
This commit is contained in:
@@ -212,6 +212,7 @@ _module_lookup = {
|
||||
"YouRetriever": "langchain_community.retrievers.you",
|
||||
"ZepRetriever": "langchain_community.retrievers.zep",
|
||||
"ZillizRetriever": "langchain_community.retrievers.zilliz",
|
||||
"NeuralDBRetriever": "langchain_community.retrievers.thirdai_neuraldb",
|
||||
}
|
||||
|
||||
|
||||
|
@@ -0,0 +1,260 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
|
||||
|
||||
class NeuralDBRetriever(BaseRetriever):
|
||||
"""Document retriever that uses ThirdAI's NeuralDB."""
|
||||
|
||||
thirdai_key: SecretStr
|
||||
"""ThirdAI API Key"""
|
||||
|
||||
db: Any = None #: :meta private:
|
||||
"""NeuralDB instance"""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
underscore_attrs_are_private = True
|
||||
|
||||
@staticmethod
|
||||
def _verify_thirdai_library(thirdai_key: Optional[str] = None) -> None:
|
||||
try:
|
||||
from thirdai import licensing
|
||||
|
||||
importlib.util.find_spec("thirdai.neural_db")
|
||||
|
||||
licensing.activate(thirdai_key or os.getenv("THIRDAI_KEY"))
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Could not import thirdai python package and neuraldb dependencies. "
|
||||
"Please install it with `pip install thirdai[neural_db]`."
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_scratch(
|
||||
cls,
|
||||
thirdai_key: Optional[str] = None,
|
||||
**model_kwargs: dict,
|
||||
) -> NeuralDBRetriever:
|
||||
"""
|
||||
Create a NeuralDBRetriever from scratch.
|
||||
|
||||
To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI
|
||||
API key, or pass ``thirdai_key`` as a named parameter.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.retrievers import NeuralDBRetriever
|
||||
|
||||
retriever = NeuralDBRetriever.from_scratch(
|
||||
thirdai_key="your-thirdai-key",
|
||||
)
|
||||
|
||||
retriever.insert([
|
||||
"/path/to/doc.pdf",
|
||||
"/path/to/doc.docx",
|
||||
"/path/to/doc.csv",
|
||||
])
|
||||
|
||||
documents = retriever.get_relevant_documents("AI-driven music therapy")
|
||||
"""
|
||||
NeuralDBRetriever._verify_thirdai_library(thirdai_key)
|
||||
from thirdai import neural_db as ndb
|
||||
|
||||
return cls(thirdai_key=thirdai_key, db=ndb.NeuralDB(**model_kwargs))
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
checkpoint: Union[str, Path],
|
||||
thirdai_key: Optional[str] = None,
|
||||
) -> NeuralDBRetriever:
|
||||
"""
|
||||
Create a NeuralDBRetriever with a base model from a saved checkpoint
|
||||
|
||||
To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI
|
||||
API key, or pass ``thirdai_key`` as a named parameter.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.retrievers import NeuralDBRetriever
|
||||
|
||||
retriever = NeuralDBRetriever.from_checkpoint(
|
||||
checkpoint="/path/to/checkpoint.ndb",
|
||||
thirdai_key="your-thirdai-key",
|
||||
)
|
||||
|
||||
retriever.insert([
|
||||
"/path/to/doc.pdf",
|
||||
"/path/to/doc.docx",
|
||||
"/path/to/doc.csv",
|
||||
])
|
||||
|
||||
documents = retriever.get_relevant_documents("AI-driven music therapy")
|
||||
"""
|
||||
NeuralDBRetriever._verify_thirdai_library(thirdai_key)
|
||||
from thirdai import neural_db as ndb
|
||||
|
||||
return cls(thirdai_key=thirdai_key, db=ndb.NeuralDB.from_checkpoint(checkpoint))
|
||||
|
||||
@root_validator()
|
||||
def validate_environments(cls, values: Dict) -> Dict:
|
||||
"""Validate ThirdAI environment variables."""
|
||||
values["thirdai_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(
|
||||
values,
|
||||
"thirdai_key",
|
||||
"THIRDAI_KEY",
|
||||
)
|
||||
)
|
||||
return values
|
||||
|
||||
def insert(
|
||||
self,
|
||||
sources: List[Any],
|
||||
train: bool = True,
|
||||
fast_mode: bool = True,
|
||||
**kwargs: dict,
|
||||
) -> None:
|
||||
"""Inserts files / document sources into the retriever.
|
||||
|
||||
Args:
|
||||
train: When True this means that the underlying model in the
|
||||
NeuralDB will undergo unsupervised pretraining on the inserted files.
|
||||
Defaults to True.
|
||||
fast_mode: Much faster insertion with a slight drop in performance.
|
||||
Defaults to True.
|
||||
"""
|
||||
sources = self._preprocess_sources(sources)
|
||||
self.db.insert(
|
||||
sources=sources,
|
||||
train=train,
|
||||
fast_approximation=fast_mode,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _preprocess_sources(self, sources: list) -> list:
|
||||
"""Checks if the provided sources are string paths. If they are, convert
|
||||
to NeuralDB document objects.
|
||||
|
||||
Args:
|
||||
sources: list of either string paths to PDF, DOCX or CSV files, or
|
||||
NeuralDB document objects.
|
||||
"""
|
||||
from thirdai import neural_db as ndb
|
||||
|
||||
if not sources:
|
||||
return sources
|
||||
preprocessed_sources = []
|
||||
for doc in sources:
|
||||
if not isinstance(doc, str):
|
||||
preprocessed_sources.append(doc)
|
||||
else:
|
||||
if doc.lower().endswith(".pdf"):
|
||||
preprocessed_sources.append(ndb.PDF(doc))
|
||||
elif doc.lower().endswith(".docx"):
|
||||
preprocessed_sources.append(ndb.DOCX(doc))
|
||||
elif doc.lower().endswith(".csv"):
|
||||
preprocessed_sources.append(ndb.CSV(doc))
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Could not automatically load {doc}. Only files "
|
||||
"with .pdf, .docx, or .csv extensions can be loaded "
|
||||
"automatically. For other formats, please use the "
|
||||
"appropriate document object from the ThirdAI library."
|
||||
)
|
||||
return preprocessed_sources
|
||||
|
||||
def upvote(self, query: str, document_id: int) -> None:
|
||||
"""The retriever upweights the score of a document for a specific query.
|
||||
This is useful for fine-tuning the retriever to user behavior.
|
||||
|
||||
Args:
|
||||
query: text to associate with `document_id`
|
||||
document_id: id of the document to associate query with.
|
||||
"""
|
||||
self.db.text_to_result(query, document_id)
|
||||
|
||||
def upvote_batch(self, query_id_pairs: List[Tuple[str, int]]) -> None:
|
||||
"""Given a batch of (query, document id) pairs, the retriever upweights
|
||||
the scores of the document for the corresponding queries.
|
||||
This is useful for fine-tuning the retriever to user behavior.
|
||||
|
||||
Args:
|
||||
query_id_pairs: list of (query, document id) pairs. For each pair in
|
||||
this list, the model will upweight the document id for the query.
|
||||
"""
|
||||
self.db.text_to_result_batch(query_id_pairs)
|
||||
|
||||
def associate(self, source: str, target: str) -> None:
|
||||
"""The retriever associates a source phrase with a target phrase.
|
||||
When the retriever sees the source phrase, it will also consider results
|
||||
that are relevant to the target phrase.
|
||||
|
||||
Args:
|
||||
source: text to associate to `target`.
|
||||
target: text to associate `source` to.
|
||||
"""
|
||||
self.db.associate(source, target)
|
||||
|
||||
def associate_batch(self, text_pairs: List[Tuple[str, str]]) -> None:
|
||||
"""Given a batch of (source, target) pairs, the retriever associates
|
||||
each source phrase with the corresponding target phrase.
|
||||
|
||||
Args:
|
||||
text_pairs: list of (source, target) text pairs. For each pair in
|
||||
this list, the source will be associated with the target.
|
||||
"""
|
||||
self.db.associate_batch(text_pairs)
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
"""Retrieve {top_k} contexts with your retriever for a given query
|
||||
|
||||
Args:
|
||||
query: Query to submit to the model
|
||||
top_k: The max number of context results to retrieve. Defaults to 10.
|
||||
"""
|
||||
try:
|
||||
if "top_k" not in kwargs:
|
||||
kwargs["top_k"] = 10
|
||||
references = self.db.search(query=query, **kwargs)
|
||||
return [
|
||||
Document(
|
||||
page_content=ref.text,
|
||||
metadata={
|
||||
"id": ref.id,
|
||||
"upvote_ids": ref.upvote_ids,
|
||||
"source": ref.source,
|
||||
"metadata": ref.metadata,
|
||||
"score": ref.score,
|
||||
"context": ref.context(1),
|
||||
},
|
||||
)
|
||||
for ref in references
|
||||
]
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error while retrieving documents: {e}") from e
|
||||
|
||||
def save(self, path: str) -> None:
|
||||
"""Saves a NeuralDB instance to disk. Can be loaded into memory by
|
||||
calling NeuralDB.from_checkpoint(path)
|
||||
|
||||
Args:
|
||||
path: path on disk to save the NeuralDB instance to.
|
||||
"""
|
||||
self.db.save(path)
|
@@ -86,48 +86,6 @@ class NeuralDBVectorStore(VectorStore):
|
||||
|
||||
return cls(db=ndb.NeuralDB(**model_kwargs)) # type: ignore[call-arg]
|
||||
|
||||
@classmethod
|
||||
def from_bazaar( # type: ignore[no-untyped-def]
|
||||
cls,
|
||||
base: str,
|
||||
bazaar_cache: Optional[str] = None,
|
||||
thirdai_key: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Create a NeuralDBVectorStore with a base model from the ThirdAI
|
||||
model bazaar.
|
||||
|
||||
To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI
|
||||
API key, or pass ``thirdai_key`` as a named parameter.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import NeuralDBVectorStore
|
||||
|
||||
vectorstore = NeuralDBVectorStore.from_bazaar(
|
||||
base="General QnA",
|
||||
thirdai_key="your-thirdai-key",
|
||||
)
|
||||
|
||||
vectorstore.insert([
|
||||
"/path/to/doc.pdf",
|
||||
"/path/to/doc.docx",
|
||||
"/path/to/doc.csv",
|
||||
])
|
||||
|
||||
documents = vectorstore.similarity_search("AI-driven music therapy")
|
||||
"""
|
||||
NeuralDBVectorStore._verify_thirdai_library(thirdai_key)
|
||||
from thirdai import neural_db as ndb
|
||||
|
||||
cache = bazaar_cache or str(Path(os.getcwd()) / "model_bazaar")
|
||||
if not os.path.exists(cache):
|
||||
os.mkdir(cache)
|
||||
model_bazaar = ndb.Bazaar(cache)
|
||||
model_bazaar.fetch()
|
||||
return cls(db=model_bazaar.get_model(base)) # type: ignore[call-arg]
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint( # type: ignore[no-untyped-def]
|
||||
cls,
|
||||
|
@@ -0,0 +1,58 @@
|
||||
import os
|
||||
import shutil
|
||||
from typing import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain_community.retrievers import NeuralDBRetriever
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def test_csv() -> Generator[str, None, None]:
|
||||
csv = "thirdai-test.csv"
|
||||
with open(csv, "w") as o:
|
||||
o.write("column_1,column_2\n")
|
||||
o.write("column one,column two\n")
|
||||
yield csv
|
||||
os.remove(csv)
|
||||
|
||||
|
||||
def assert_result_correctness(documents: list) -> None:
|
||||
assert len(documents) == 1
|
||||
assert documents[0].page_content == "column_1: column one\n\ncolumn_2: column two"
|
||||
|
||||
|
||||
@pytest.mark.requires("thirdai[neural_db]")
|
||||
def test_neuraldb_retriever_from_scratch(test_csv: str) -> None:
|
||||
retriever = NeuralDBRetriever.from_scratch()
|
||||
retriever.insert([test_csv])
|
||||
documents = retriever.get_relevant_documents("column")
|
||||
assert_result_correctness(documents)
|
||||
|
||||
|
||||
@pytest.mark.requires("thirdai[neural_db]")
|
||||
def test_neuraldb_retriever_from_checkpoint(test_csv: str) -> None:
|
||||
checkpoint = "thirdai-test-save.ndb"
|
||||
if os.path.exists(checkpoint):
|
||||
shutil.rmtree(checkpoint)
|
||||
try:
|
||||
retriever = NeuralDBRetriever.from_scratch()
|
||||
retriever.insert([test_csv])
|
||||
retriever.save(checkpoint)
|
||||
loaded_retriever = NeuralDBRetriever.from_checkpoint(checkpoint)
|
||||
documents = loaded_retriever.get_relevant_documents("column")
|
||||
assert_result_correctness(documents)
|
||||
finally:
|
||||
if os.path.exists(checkpoint):
|
||||
shutil.rmtree(checkpoint)
|
||||
|
||||
|
||||
@pytest.mark.requires("thirdai[neural_db]")
|
||||
def test_neuraldb_retriever_other_methods(test_csv: str) -> None:
|
||||
retriever = NeuralDBRetriever.from_scratch()
|
||||
retriever.insert([test_csv])
|
||||
# Make sure they don't throw an error.
|
||||
retriever.associate("A", "B")
|
||||
retriever.associate_batch([("A", "B"), ("C", "D")])
|
||||
retriever.upvote("A", 0)
|
||||
retriever.upvote_batch([("A", 0), ("B", 0)])
|
@@ -46,14 +46,6 @@ def test_neuraldb_retriever_from_checkpoint(test_csv): # type: ignore[no-untype
|
||||
shutil.rmtree(checkpoint)
|
||||
|
||||
|
||||
@pytest.mark.requires("thirdai[neural_db]")
|
||||
def test_neuraldb_retriever_from_bazaar(test_csv): # type: ignore[no-untyped-def]
|
||||
retriever = NeuralDBVectorStore.from_bazaar("General QnA")
|
||||
retriever.insert([test_csv])
|
||||
documents = retriever.similarity_search("column")
|
||||
assert_result_correctness(documents)
|
||||
|
||||
|
||||
@pytest.mark.requires("thirdai[neural_db]")
|
||||
def test_neuraldb_retriever_other_methods(test_csv): # type: ignore[no-untyped-def]
|
||||
retriever = NeuralDBVectorStore.from_scratch()
|
||||
|
@@ -40,6 +40,7 @@ EXPECTED_ALL = [
|
||||
"ZepRetriever",
|
||||
"ZillizRetriever",
|
||||
"DocArrayRetriever",
|
||||
"NeuralDBRetriever",
|
||||
]
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user