mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-10 23:41:28 +00:00
Pgvector template (#13267)
Including pvector template, adapting what is covered in the [cookbook](https://github.com/langchain-ai/langchain/blob/master/cookbook/retrieval_in_sql.ipynb). --------- Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
118
templates/sql-pgvector/sql_pgvector/chain.py
Normal file
118
templates/sql-pgvector/sql_pgvector/chain.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import os
|
||||
import re
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
||||
from langchain.sql_database import SQLDatabase
|
||||
|
||||
from sql_pgvector.prompt_templates import final_template, postgresql_template
|
||||
|
||||
"""
|
||||
IMPORTANT: For using this template, you will need to
|
||||
follow the setup steps in the readme file
|
||||
"""
|
||||
|
||||
if os.environ.get("OPENAI_API_KEY", None) is None:
|
||||
raise Exception("Missing `OPENAI_API_KEY` environment variable")
|
||||
|
||||
postgres_user = os.environ.get("POSTGRES_USER", "postgres")
|
||||
postgres_password = os.environ.get("POSTGRES_PASSWORD", "test")
|
||||
postgres_db = os.environ.get("POSTGRES_DB", "vectordb")
|
||||
postgres_host = os.environ.get("POSTGRES_HOST", "localhost")
|
||||
postgres_port = os.environ.get("POSTGRES_PORT", "5432")
|
||||
|
||||
# Connect to DB
|
||||
# Replace with your own
|
||||
CONNECTION_STRING = (
|
||||
f"postgresql+psycopg2://{postgres_user}:{postgres_password}"
|
||||
f"@{postgres_host}:{postgres_port}/{postgres_db}"
|
||||
)
|
||||
db = SQLDatabase.from_uri(CONNECTION_STRING)
|
||||
|
||||
# Choose LLM and embeddings model
|
||||
llm = ChatOpenAI(temperature=0)
|
||||
embeddings_model = OpenAIEmbeddings()
|
||||
|
||||
|
||||
# # Ingest code - you will need to run this the first time
|
||||
# # Insert your query e.g. "SELECT Name FROM Track"
|
||||
# column_to_embed = db.run('replace-with-your-own-select-query')
|
||||
# column_values = [s[0] for s in eval(column_to_embed)]
|
||||
# embeddings = embeddings_model.embed_documents(column_values)
|
||||
|
||||
# for i in range(len(embeddings)):
|
||||
# value = column_values[i].replace("'", "''")
|
||||
# embedding = embeddings[i]
|
||||
|
||||
# # Replace with your own SQL command for your column and table.
|
||||
# sql_command = (
|
||||
# f'UPDATE "Track" SET "embeddings" = ARRAY{embedding} WHERE "Name" ='
|
||||
# + f"'{value}'"
|
||||
# )
|
||||
# db.run(sql_command)
|
||||
|
||||
|
||||
# -----------------
|
||||
# Define functions
|
||||
# -----------------
|
||||
def get_schema(_):
|
||||
return db.get_table_info()
|
||||
|
||||
|
||||
def run_query(query):
|
||||
return db.run(query)
|
||||
|
||||
|
||||
def replace_brackets(match):
|
||||
words_inside_brackets = match.group(1).split(", ")
|
||||
embedded_words = [
|
||||
str(embeddings_model.embed_query(word)) for word in words_inside_brackets
|
||||
]
|
||||
return "', '".join(embedded_words)
|
||||
|
||||
|
||||
def get_query(query):
|
||||
sql_query = re.sub(r"\[([\w\s,]+)\]", replace_brackets, query)
|
||||
return sql_query
|
||||
|
||||
|
||||
# -----------------------
|
||||
# Now we create the chain
|
||||
# -----------------------
|
||||
|
||||
query_generation_prompt = ChatPromptTemplate.from_messages(
|
||||
[("system", postgresql_template), ("human", "{question}")]
|
||||
)
|
||||
|
||||
sql_query_chain = (
|
||||
RunnablePassthrough.assign(schema=get_schema)
|
||||
| query_generation_prompt
|
||||
| llm.bind(stop=["\nSQLResult:"])
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
final_prompt = ChatPromptTemplate.from_messages(
|
||||
[("system", final_template), ("human", "{question}")]
|
||||
)
|
||||
|
||||
full_chain = (
|
||||
RunnablePassthrough.assign(query=sql_query_chain)
|
||||
| RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
response=RunnableLambda(lambda x: db.run(get_query(x["query"]))),
|
||||
)
|
||||
| final_prompt
|
||||
| llm
|
||||
)
|
||||
|
||||
|
||||
class InputType(BaseModel):
|
||||
question: str
|
||||
|
||||
|
||||
chain = full_chain.with_types(input_type=InputType)
|
Reference in New Issue
Block a user