mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-25 08:03:39 +00:00
RFC: more complete return (#313)
Co-authored-by: Andrew Williamson <awilliamson10@indstate.edu> Co-authored-by: awilliamson10 <aw.williamson10@gmail.com>
This commit is contained in:
parent
482611f426
commit
595cc1ae1a
@ -1,11 +1,39 @@
|
||||
"""Base interface for large language models to expose."""
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Mapping, Optional
|
||||
from typing import Any, List, Mapping, NamedTuple, Optional
|
||||
|
||||
|
||||
class Generation(NamedTuple):
|
||||
"""Output of a single generation."""
|
||||
|
||||
text: str
|
||||
"""Generated text output."""
|
||||
# TODO: add log probs
|
||||
|
||||
|
||||
class LLMResult(NamedTuple):
|
||||
"""Class that contains all relevant information for an LLM Result."""
|
||||
|
||||
generations: List[List[Generation]]
|
||||
"""List of the things generated. This is List[List[]] because
|
||||
each input could have multiple generations."""
|
||||
llm_output: Optional[dict] = None
|
||||
"""For arbitrary LLM provider specific output."""
|
||||
|
||||
|
||||
class LLM(ABC):
|
||||
"""LLM wrapper should take in a prompt and return a string."""
|
||||
|
||||
def generate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
"""Run the LLM on the given prompt and input."""
|
||||
generations = []
|
||||
for prompt in prompts:
|
||||
text = self(prompt, stop=stop)
|
||||
generations.append([Generation(text=text)])
|
||||
return LLMResult(generations=generations)
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
"""Get the number of tokens present in the text."""
|
||||
# TODO: this method may not be exact.
|
||||
|
@ -3,7 +3,7 @@ from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.base import LLM, Generation, LLMResult
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
@ -97,6 +97,48 @@ class OpenAI(LLM, BaseModel):
|
||||
}
|
||||
return {**normal_params, **self.model_kwargs}
|
||||
|
||||
def generate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
"""Call out to OpenAI's endpoint with k unique prompts.
|
||||
|
||||
Args:
|
||||
prompts: The prompts to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The full LLM output.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = openai.generate(["Tell me a joke."])
|
||||
"""
|
||||
params = self._default_params
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
|
||||
if params["max_tokens"] == -1:
|
||||
if len(prompts) != 1:
|
||||
raise ValueError(
|
||||
"max_tokens set to -1 not supported for multiple inputs."
|
||||
)
|
||||
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
|
||||
|
||||
response = self.client.create(model=self.model_name, prompt=prompts, **params)
|
||||
generations = []
|
||||
for i, prompt in enumerate(prompts):
|
||||
choices = response["choices"][i * self.n : (i + 1) * self.n]
|
||||
generations.append([Generation(text=choice["text"]) for choice in choices])
|
||||
# Get the token usage from the response.
|
||||
# Includes prompt, completion, and total tokens used.
|
||||
token_usage = response["usage"]
|
||||
return LLMResult(
|
||||
generations=generations, llm_output={"token_usage": token_usage}
|
||||
)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
@ -117,17 +159,7 @@ class OpenAI(LLM, BaseModel):
|
||||
|
||||
response = openai("Tell me a joke.")
|
||||
"""
|
||||
params = self._default_params
|
||||
|
||||
if params["max_tokens"] == -1:
|
||||
params["max_tokens"] = self.max_tokens_for_prompt(prompt)
|
||||
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
response = self.client.create(model=self.model_name, prompt=prompt, **params)
|
||||
return response["choices"][0]["text"]
|
||||
return self.generate([prompt], stop=stop).generations[0][0].text
|
||||
|
||||
def modelname_to_contextsize(self, modelname: str) -> int:
|
||||
"""Calculate the maximum number of tokens possible to generate for a model.
|
||||
|
Loading…
Reference in New Issue
Block a user