mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-31 08:32:32 +00:00
parent
e1a24d09c5
commit
5ae0e687b3
@ -59,7 +59,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
|
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -84,7 +84,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||||
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
|
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -229,7 +229,7 @@
|
|||||||
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # LLM\n",
|
" # LLM\n",
|
||||||
" llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n",
|
" llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Post-processing\n",
|
" # Post-processing\n",
|
||||||
" def format_docs(docs):\n",
|
" def format_docs(docs):\n",
|
||||||
|
@ -236,7 +236,7 @@
|
|||||||
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # LLM\n",
|
" # LLM\n",
|
||||||
" llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
" llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # Post-processing\n",
|
" # Post-processing\n",
|
||||||
" def format_docs(docs):\n",
|
" def format_docs(docs):\n",
|
||||||
|
@ -84,7 +84,7 @@
|
|||||||
"from langchain.retrievers import KayAiRetriever\n",
|
"from langchain.retrievers import KayAiRetriever\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||||
"retriever = KayAiRetriever.create(\n",
|
"retriever = KayAiRetriever.create(\n",
|
||||||
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
|
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
|
||||||
")\n",
|
")\n",
|
||||||
|
@ -274,7 +274,7 @@
|
|||||||
"db = SQLDatabase.from_uri(\n",
|
"db = SQLDatabase.from_uri(\n",
|
||||||
" CONNECTION_STRING\n",
|
" CONNECTION_STRING\n",
|
||||||
") # We reconnect to db so the new columns are loaded as well.\n",
|
") # We reconnect to db so the new columns are loaded as well.\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"sql_query_chain = (\n",
|
"sql_query_chain = (\n",
|
||||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||||
|
@ -3811,7 +3811,7 @@
|
|||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
||||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -424,7 +424,7 @@
|
|||||||
" DialogueAgentWithTools(\n",
|
" DialogueAgentWithTools(\n",
|
||||||
" name=name,\n",
|
" name=name,\n",
|
||||||
" system_message=SystemMessage(content=system_message),\n",
|
" system_message=SystemMessage(content=system_message),\n",
|
||||||
" model=ChatOpenAI(model_name=\"gpt-4\", temperature=0.2),\n",
|
" model=ChatOpenAI(model=\"gpt-4\", temperature=0.2),\n",
|
||||||
" tool_names=tools,\n",
|
" tool_names=tools,\n",
|
||||||
" top_k_results=2,\n",
|
" top_k_results=2,\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
|
@ -601,7 +601,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
|
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -94,12 +94,12 @@ from langchain_openai import ChatOpenAI
|
|||||||
llm = ChatOpenAI()
|
llm = ChatOpenAI()
|
||||||
```
|
```
|
||||||
|
|
||||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
|
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_openai import ChatOpenAI
|
from langchain_openai import ChatOpenAI
|
||||||
|
|
||||||
llm = ChatOpenAI(openai_api_key="...")
|
llm = ChatOpenAI(api_key="...")
|
||||||
```
|
```
|
||||||
|
|
||||||
</TabItem>
|
</TabItem>
|
||||||
@ -509,7 +509,7 @@ from langchain.agents import AgentExecutor
|
|||||||
# Get the prompt to use - you can modify this!
|
# Get the prompt to use - you can modify this!
|
||||||
prompt = hub.pull("hwchase17/openai-functions-agent")
|
prompt = hub.pull("hwchase17/openai-functions-agent")
|
||||||
|
|
||||||
# You need to set OPENAI_API_KEY environment variable or pass it as argument `openai_api_key`.
|
# You need to set OPENAI_API_KEY environment variable or pass it as argument `api_key`.
|
||||||
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
||||||
agent = create_openai_functions_agent(llm, tools, prompt)
|
agent = create_openai_functions_agent(llm, tools, prompt)
|
||||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
||||||
|
@ -27,7 +27,7 @@ Let's suppose we have a simple agent, and want to visualize the actions it takes
|
|||||||
from langchain.agents import AgentType, initialize_agent, load_tools
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
||||||
from langchain_openai import ChatOpenAI
|
from langchain_openai import ChatOpenAI
|
||||||
|
|
||||||
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
|
llm = ChatOpenAI(model="gpt-4", temperature=0)
|
||||||
tools = load_tools(["ddg-search", "llm-math"], llm=llm)
|
tools = load_tools(["ddg-search", "llm-math"], llm=llm)
|
||||||
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
|
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
|
||||||
```
|
```
|
||||||
|
@ -204,7 +204,7 @@
|
|||||||
" ]\n",
|
" ]\n",
|
||||||
")\n",
|
")\n",
|
||||||
"# Here we're going to use a bad model name to easily create a chain that will error\n",
|
"# Here we're going to use a bad model name to easily create a chain that will error\n",
|
||||||
"chat_model = ChatOpenAI(model_name=\"gpt-fake\")\n",
|
"chat_model = ChatOpenAI(model=\"gpt-fake\")\n",
|
||||||
"bad_chain = chat_prompt | chat_model | StrOutputParser()"
|
"bad_chain = chat_prompt | chat_model | StrOutputParser()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -218,7 +218,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Build a QA chain\n",
|
"# Build a QA chain\n",
|
||||||
"qa_chain = RetrievalQA.from_chain_type(\n",
|
"qa_chain = RetrievalQA.from_chain_type(\n",
|
||||||
" llm=ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0),\n",
|
" llm=ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
|
||||||
" chain_type=\"stuff\",\n",
|
" chain_type=\"stuff\",\n",
|
||||||
" retriever=vectordb.as_retriever(),\n",
|
" retriever=vectordb.as_retriever(),\n",
|
||||||
")"
|
")"
|
||||||
|
@ -30,7 +30,7 @@ messages = [
|
|||||||
HumanMessage(content="Ping?"),
|
HumanMessage(content="Ping?"),
|
||||||
]
|
]
|
||||||
|
|
||||||
llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback])
|
llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback])
|
||||||
```
|
```
|
||||||
|
|
||||||
[Log10 + Langchain + Logs docs](https://github.com/log10-io/log10/blob/main/logging.md#langchain-logger)
|
[Log10 + Langchain + Logs docs](https://github.com/log10-io/log10/blob/main/logging.md#langchain-logger)
|
||||||
@ -55,7 +55,7 @@ messages = [
|
|||||||
HumanMessage(content="Ping?"),
|
HumanMessage(content="Ping?"),
|
||||||
]
|
]
|
||||||
|
|
||||||
llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
|
llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
|
||||||
completion = llm.predict_messages(messages, tags=["foobar"])
|
completion = llm.predict_messages(messages, tags=["foobar"])
|
||||||
print(completion)
|
print(completion)
|
||||||
|
|
||||||
|
@ -203,7 +203,7 @@
|
|||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\") # switch to 'gpt-4'\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\") # switch to 'gpt-4'\n",
|
||||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -153,7 +153,7 @@
|
|||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -140,7 +140,7 @@
|
|||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -81,7 +81,7 @@
|
|||||||
"from langchain_community.retrievers import KayAiRetriever\n",
|
"from langchain_community.retrievers import KayAiRetriever\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||||
"retriever = KayAiRetriever.create(\n",
|
"retriever = KayAiRetriever.create(\n",
|
||||||
" dataset_id=\"company\", data_types=[\"10-K\", \"10-Q\"], num_contexts=6\n",
|
" dataset_id=\"company\", data_types=[\"10-K\", \"10-Q\"], num_contexts=6\n",
|
||||||
")\n",
|
")\n",
|
||||||
|
@ -202,7 +202,7 @@
|
|||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\") # switch to 'gpt-4'\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\") # switch to 'gpt-4'\n",
|
||||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -144,7 +144,7 @@
|
|||||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\"\"\" Obtain a Large Language Model \"\"\"\n",
|
"\"\"\" Obtain a Large Language Model \"\"\"\n",
|
||||||
"LLM = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"LLM = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\"\"\" Create a chain for the RAG flow \"\"\"\n",
|
"\"\"\" Create a chain for the RAG flow \"\"\"\n",
|
||||||
"rag_chain = (\n",
|
"rag_chain = (\n",
|
||||||
|
@ -394,7 +394,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"qa_chain = RetrievalQA.from_chain_type(llm, retriever=vector_db.as_retriever())"
|
"qa_chain = RetrievalQA.from_chain_type(llm, retriever=vector_db.as_retriever())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -437,7 +437,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||||
"memory = ConversationBufferMemory(\n",
|
"memory = ConversationBufferMemory(\n",
|
||||||
" memory_key=\"chat_history\", output_key=\"answer\", return_messages=True\n",
|
" memory_key=\"chat_history\", output_key=\"answer\", return_messages=True\n",
|
||||||
")\n",
|
")\n",
|
||||||
|
@ -589,7 +589,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_community.chat_models import ChatOpenAI\n",
|
"from langchain_community.chat_models import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"llm.predict(\"What did the president say about Justice Breyer\")"
|
"llm.predict(\"What did the president say about Justice Breyer\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -824,7 +824,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_community.chat_models import ChatOpenAI\n",
|
"from langchain_community.chat_models import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)"
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -35,12 +35,12 @@ Accessing the API requires an API key, which you can get by creating an account
|
|||||||
export OPENAI_API_KEY="..."
|
export OPENAI_API_KEY="..."
|
||||||
```
|
```
|
||||||
|
|
||||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
|
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_openai import OpenAIEmbeddings
|
from langchain_openai import OpenAIEmbeddings
|
||||||
|
|
||||||
embeddings_model = OpenAIEmbeddings(openai_api_key="...")
|
embeddings_model = OpenAIEmbeddings(api_key="...")
|
||||||
```
|
```
|
||||||
|
|
||||||
Otherwise you can initialize without any params:
|
Otherwise you can initialize without any params:
|
||||||
|
@ -52,7 +52,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"```{=mdx}\n",
|
"```{=mdx}\n",
|
||||||
"<ChatModelTabs\n",
|
"<ChatModelTabs\n",
|
||||||
" openaiParams={`model=\"gpt-3.5-turbo-0125\", openai_api_key=\"...\"`}\n",
|
" openaiParams={`model=\"gpt-3.5-turbo-0125\", api_key=\"...\"`}\n",
|
||||||
" anthropicParams={`model=\"claude-3-sonnet-20240229\", anthropic_api_key=\"...\"`}\n",
|
" anthropicParams={`model=\"claude-3-sonnet-20240229\", anthropic_api_key=\"...\"`}\n",
|
||||||
" fireworksParams={`model=\"accounts/fireworks/models/mixtral-8x7b-instruct\", fireworks_api_key=\"...\"`}\n",
|
" fireworksParams={`model=\"accounts/fireworks/models/mixtral-8x7b-instruct\", fireworks_api_key=\"...\"`}\n",
|
||||||
" mistralParams={`model=\"mistral-large-latest\", mistral_api_key=\"...\"`}\n",
|
" mistralParams={`model=\"mistral-large-latest\", mistral_api_key=\"...\"`}\n",
|
||||||
|
@ -30,7 +30,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\")"
|
"llm = ChatOpenAI(model=\"gpt-4\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -63,11 +63,11 @@ llm = OpenAI()
|
|||||||
chat_model = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
chat_model = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
||||||
```
|
```
|
||||||
|
|
||||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
|
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_openai import ChatOpenAI
|
from langchain_openai import ChatOpenAI
|
||||||
llm = ChatOpenAI(openai_api_key="...")
|
llm = ChatOpenAI(api_key="...")
|
||||||
```
|
```
|
||||||
|
|
||||||
Both `llm` and `chat_model` are objects that represent configuration for a particular model.
|
Both `llm` and `chat_model` are objects that represent configuration for a particular model.
|
||||||
|
@ -40,7 +40,7 @@
|
|||||||
"export OPENAI_API_KEY=\"...\"\n",
|
"export OPENAI_API_KEY=\"...\"\n",
|
||||||
"```\n",
|
"```\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:\n",
|
"If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -53,7 +53,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_openai import OpenAI\n",
|
"from langchain_openai import OpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = OpenAI(openai_api_key=\"...\")"
|
"llm = OpenAI(api_key=\"...\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -38,11 +38,11 @@ llm = OpenAI()
|
|||||||
chat_model = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
chat_model = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
||||||
```
|
```
|
||||||
|
|
||||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
|
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_openai import ChatOpenAI
|
from langchain_openai import ChatOpenAI
|
||||||
llm = ChatOpenAI(openai_api_key="...")
|
llm = ChatOpenAI(api_key="...")
|
||||||
```
|
```
|
||||||
|
|
||||||
</TabItem>
|
</TabItem>
|
||||||
|
@ -237,7 +237,7 @@
|
|||||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||||
"from langchain_openai import ChatOpenAI\n",
|
"from langchain_openai import ChatOpenAI\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-4\")\n",
|
"llm = ChatOpenAI(model=\"gpt-4\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# First we need a prompt that we can pass into an LLM to generate this search query\n",
|
"# First we need a prompt that we can pass into an LLM to generate this search query\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
@ -269,7 +269,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# LLM\n",
|
"# LLM\n",
|
||||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0.7)\n",
|
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0.7)\n",
|
||||||
"chain = create_data_generation_chain(model)"
|
"chain = create_data_generation_chain(model)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -151,7 +151,7 @@
|
|||||||
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
||||||
"retriever = vectorstore.as_retriever()\n",
|
"retriever = vectorstore.as_retriever()\n",
|
||||||
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def format_docs(docs):\n",
|
"def format_docs(docs):\n",
|
||||||
@ -417,7 +417,7 @@
|
|||||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"### Construct retriever ###\n",
|
"### Construct retriever ###\n",
|
||||||
|
@ -143,7 +143,7 @@
|
|||||||
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
||||||
"retriever = vectorstore.as_retriever()\n",
|
"retriever = vectorstore.as_retriever()\n",
|
||||||
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def format_docs(docs):\n",
|
"def format_docs(docs):\n",
|
||||||
|
@ -143,7 +143,7 @@
|
|||||||
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
"# Retrieve and generate using the relevant snippets of the blog.\n",
|
||||||
"retriever = vectorstore.as_retriever()\n",
|
"retriever = vectorstore.as_retriever()\n",
|
||||||
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||||
"llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
|
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def format_docs(docs):\n",
|
"def format_docs(docs):\n",
|
||||||
|
@ -160,7 +160,7 @@ class ChatOpenAI(BaseChatModel):
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_community.chat_models import ChatOpenAI
|
from langchain_community.chat_models import ChatOpenAI
|
||||||
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
|
openai = ChatOpenAI(model="gpt-3.5-turbo")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -33,7 +33,7 @@ class PromptLayerChatOpenAI(ChatOpenAI):
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_community.chat_models import PromptLayerChatOpenAI
|
from langchain_community.chat_models import PromptLayerChatOpenAI
|
||||||
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
|
openai = PromptLayerChatOpenAI(model="gpt-3.5-turbo")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
pl_tags: Optional[List[str]]
|
pl_tags: Optional[List[str]]
|
||||||
|
@ -60,7 +60,7 @@ def create_stuff_documents_chain(
|
|||||||
prompt = ChatPromptTemplate.from_messages(
|
prompt = ChatPromptTemplate.from_messages(
|
||||||
[("system", "What are everyone's favorite colors:\\n\\n{context}")]
|
[("system", "What are everyone's favorite colors:\\n\\n{context}")]
|
||||||
)
|
)
|
||||||
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
||||||
chain = create_stuff_documents_chain(llm, prompt)
|
chain = create_stuff_documents_chain(llm, prompt)
|
||||||
|
|
||||||
docs = [
|
docs = [
|
||||||
|
@ -240,7 +240,7 @@ class ChatOpenAI(BaseChatModel):
|
|||||||
|
|
||||||
from langchain_openai import ChatOpenAI
|
from langchain_openai import ChatOpenAI
|
||||||
|
|
||||||
model = ChatOpenAI(model_name="gpt-3.5-turbo")
|
model = ChatOpenAI(model="gpt-3.5-turbo")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -20,8 +20,8 @@ corrector_schema = [
|
|||||||
cypher_validation = CypherQueryCorrector(corrector_schema)
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
||||||
|
|
||||||
# LLMs
|
# LLMs
|
||||||
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
cypher_llm = ChatOpenAI(model="gpt-4", temperature=0.0)
|
||||||
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
qa_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0)
|
||||||
|
|
||||||
|
|
||||||
# Extract entities from text
|
# Extract entities from text
|
||||||
|
@ -20,8 +20,8 @@ corrector_schema = [
|
|||||||
cypher_validation = CypherQueryCorrector(corrector_schema)
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
||||||
|
|
||||||
# LLMs
|
# LLMs
|
||||||
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
cypher_llm = ChatOpenAI(model="gpt-4", temperature=0.0)
|
||||||
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
qa_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0)
|
||||||
|
|
||||||
|
|
||||||
def convert_messages(input: List[Dict[str, Any]]) -> ChatMessageHistory:
|
def convert_messages(input: List[Dict[str, Any]]) -> ChatMessageHistory:
|
||||||
|
@ -17,8 +17,8 @@ corrector_schema = [
|
|||||||
cypher_validation = CypherQueryCorrector(corrector_schema)
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
||||||
|
|
||||||
# LLMs
|
# LLMs
|
||||||
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
cypher_llm = ChatOpenAI(model="gpt-4", temperature=0.0)
|
||||||
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
qa_llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0)
|
||||||
|
|
||||||
# Generate Cypher statement based on natural language input
|
# Generate Cypher statement based on natural language input
|
||||||
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
||||||
|
@ -203,13 +203,13 @@ class Instruction(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
agent_executor = (
|
agent_executor = (
|
||||||
get_agent_executor(ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0.0))
|
get_agent_executor(ChatOpenAI(model="gpt-4-1106-preview", temperature=0.0))
|
||||||
.configurable_alternatives(
|
.configurable_alternatives(
|
||||||
ConfigurableField("model_name"),
|
ConfigurableField("model_name"),
|
||||||
default_key="gpt4turbo",
|
default_key="gpt4turbo",
|
||||||
gpt4=get_agent_executor(ChatOpenAI(model_name="gpt-4", temperature=0.0)),
|
gpt4=get_agent_executor(ChatOpenAI(model="gpt-4", temperature=0.0)),
|
||||||
gpt35t=get_agent_executor(
|
gpt35t=get_agent_executor(
|
||||||
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0),
|
ChatOpenAI(model="gpt-3.5-turbo", temperature=0.0),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
.with_types(input_type=Instruction, output_type=str)
|
.with_types(input_type=Instruction, output_type=str)
|
||||||
|
@ -47,7 +47,7 @@ prompt = ChatPromptTemplate.from_template(template)
|
|||||||
|
|
||||||
|
|
||||||
# RAG
|
# RAG
|
||||||
model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
||||||
chain = (
|
chain = (
|
||||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||||
| prompt
|
| prompt
|
||||||
|
@ -54,7 +54,7 @@ prompt = ChatPromptTemplate.from_template(template)
|
|||||||
|
|
||||||
|
|
||||||
# RAG Chain
|
# RAG Chain
|
||||||
model = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
model = ChatOpenAI(model="gpt-3.5-turbo-16k")
|
||||||
chain = (
|
chain = (
|
||||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||||
| prompt
|
| prompt
|
||||||
|
Loading…
Reference in New Issue
Block a user