standard-tests: troubleshooting docstrings (#28268)

This commit is contained in:
Erick Friis 2024-11-21 14:05:31 -08:00 committed by GitHub
parent ad4333ca03
commit 5bc2df3060
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 306 additions and 0 deletions

View File

@ -144,3 +144,6 @@ packages:
- name: langchain-box
repo: langchain-ai/langchain-box
path: libs/box
- name: langchain-tests
repo: langchain-ai/langchain
path: libs/standard-tests

View File

@ -77,6 +77,24 @@ class ChatModelIntegrationTests(ChatModelTests):
return {}
def test_invoke(self, model: BaseChatModel) -> None:
"""Test to verify that `model.invoke(simple_message)` works.
This should pass for all integrations.
.. dropdown:: Troubleshooting
If this test fails, you should make sure your _generate method
does not raise any exceptions, and that it returns a valid
:class:`~langchain_core.outputs.chat_result.ChatResult` like so:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(content="Output text")
)]
)
"""
result = model.invoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
@ -84,6 +102,31 @@ class ChatModelIntegrationTests(ChatModelTests):
assert len(result.content) > 0
async def test_ainvoke(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.ainvoke(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "natively async" implementation, but rather that the model can be used
in an async context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`.
because `ainvoke` has a default implementation that calls `invoke` in an
async context.
If that test passes but not this one, you should make sure your _agenerate
method does not raise any exceptions, and that it returns a valid
:class:`~langchain_core.outputs.chat_result.ChatResult` like so:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(content="Output text")
)]
)
"""
result = await model.ainvoke("Hello")
assert result is not None
assert isinstance(result, AIMessage)
@ -91,6 +134,30 @@ class ChatModelIntegrationTests(ChatModelTests):
assert len(result.content) > 0
def test_stream(self, model: BaseChatModel) -> None:
"""Test to verify that `model.stream(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "streaming" implementation, but rather that the model can be used in a
streaming context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`.
because `stream` has a default implementation that calls `invoke` and yields
the result as a single chunk.
If that test passes but not this one, you should make sure your _stream
method does not raise any exceptions, and that it yields valid
:class:`~langchain_core.outputs.chat_generation.ChatGenerationChunk`
objects like so:
.. code-block:: python
yield ChatGenerationChunk(
message=AIMessageChunk(content="chunk text")
)
"""
num_tokens = 0
for token in model.stream("Hello"):
assert token is not None
@ -99,6 +166,33 @@ class ChatModelIntegrationTests(ChatModelTests):
assert num_tokens > 0
async def test_astream(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.astream(simple_message)` works.
This should pass for all integrations. Passing this test does not indicate
a "natively async" or "streaming" implementation, but rather that the model can
be used in an async streaming context.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_stream`.
and
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_ainvoke`.
because `astream` has a default implementation that calls `_stream` in an
async context if it is implemented, or `ainvoke` and yields the result as a
single chunk if not.
If those tests pass but not this one, you should make sure your _astream
method does not raise any exceptions, and that it yields valid
:class:`~langchain_core.outputs.chat_generation.ChatGenerationChunk`
objects like so:
.. code-block:: python
yield ChatGenerationChunk(
message=AIMessageChunk(content="chunk text")
)
"""
num_tokens = 0
async for token in model.astream("Hello"):
assert token is not None
@ -107,6 +201,22 @@ class ChatModelIntegrationTests(ChatModelTests):
assert num_tokens > 0
def test_batch(self, model: BaseChatModel) -> None:
"""Test to verify that `model.batch([messages])` works.
This should pass for all integrations. Tests the model's ability to process
multiple prompts in a single batch.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`
because `batch` has a default implementation that calls `invoke` for each
message in the batch.
If that test passes but not this one, you should make sure your `batch`
method does not raise any exceptions, and that it returns a list of valid
:class:`~langchain_core.messages.AIMessage` objects.
"""
batch_results = model.batch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
@ -118,6 +228,24 @@ class ChatModelIntegrationTests(ChatModelTests):
assert len(result.content) > 0
async def test_abatch(self, model: BaseChatModel) -> None:
"""Test to verify that `await model.abatch([messages])` works.
This should pass for all integrations. Tests the model's ability to process
multiple prompts in a single batch asynchronously.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_batch`
and
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_ainvoke`
because `abatch` has a default implementation that calls `ainvoke` for each
message in the batch.
If those tests pass but not this one, you should make sure your `abatch`
method does not raise any exceptions, and that it returns a list of valid
:class:`~langchain_core.messages.AIMessage` objects.
"""
batch_results = await model.abatch(["Hello", "Hey"])
assert batch_results is not None
assert isinstance(batch_results, list)
@ -129,6 +257,23 @@ class ChatModelIntegrationTests(ChatModelTests):
assert len(result.content) > 0
def test_conversation(self, model: BaseChatModel) -> None:
"""Test to verify that the model can handle multi-turn conversations.
This should pass for all integrations. Tests the model's ability to process
a sequence of alternating human and AI messages as context for generating
the next response.
.. dropdown:: Troubleshooting
First, debug
:meth:`~langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_invoke`
because this test also uses `model.invoke()`.
If that test passes but not this one, you should verify that:
1. Your model correctly processes the message history
2. The model maintains appropriate context from previous messages
3. The response is a valid :class:`~langchain_core.messages.AIMessage`
"""
messages = [
HumanMessage("hello"),
AIMessage("hello"),
@ -141,6 +286,82 @@ class ChatModelIntegrationTests(ChatModelTests):
assert len(result.content) > 0
def test_usage_metadata(self, model: BaseChatModel) -> None:
"""Test to verify that the model returns correct usage metadata.
This test is optional and should be skipped if the model does not return
usage metadata (see Configuration below).
.. dropdown:: Configuration
By default, this test is run.
To disable this feature, set `returns_usage_metadata` to False in your test
class:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def returns_usage_metadata(self) -> bool:
return False
This test can also check the format of specific kinds of usage metadata
based on the `supported_usage_metadata_details` property. This property
should be configured as follows with the types of tokens that the model
supports tracking:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def supported_usage_metadata_details(self) -> dict:
return {
"invoke": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
"stream": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
}
.. dropdown:: Troubleshooting
If this test fails, first verify that your model returns
:class:`~langchain_core.messages.ai.UsageMetadata` dicts
attached to the returned AIMessage object in `_generate`:
.. code-block:: python
return ChatResult(
generations=[ChatGeneration(
message=AIMessage(
content="Output text",
usage_metadata={
"input_tokens": 350,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
}
}
)
)]
)
"""
if not self.returns_usage_metadata:
pytest.skip("Not implemented.")
result = model.invoke("Hello")
@ -207,6 +428,88 @@ class ChatModelIntegrationTests(ChatModelTests):
)
def test_usage_metadata_streaming(self, model: BaseChatModel) -> None:
"""
Test to verify that the model returns correct usage metadata in streaming mode.
.. dropdown:: Configuration
By default, this test is run.
To disable this feature, set `returns_usage_metadata` to False in your test
class:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def returns_usage_metadata(self) -> bool:
return False
This test can also check the format of specific kinds of usage metadata
based on the `supported_usage_metadata_details` property. This property
should be configured as follows with the types of tokens that the model
supports tracking:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def supported_usage_metadata_details(self) -> dict:
return {
"invoke": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
"stream": [
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
],
}
.. dropdown:: Troubleshooting
If this test fails, first verify that your model yields
:class:`~langchain_core.messages.ai.UsageMetadata` dicts
attached to the returned AIMessage object in `_stream`
that sum up to the total usage metadata.
Note that `input_tokens` should only be included on one of the chunks
(typically the first or the last chunk), and the rest should have 0 or None
to avoid counting input tokens multiple times.
`output_tokens` typically count the number of tokens in each chunk, not the
sum. This test will pass as long as the sum of `output_tokens` across all
chunks is not 0.
.. code-block:: python
yield ChatResult(
generations=[ChatGeneration(
message=AIMessage(
content="Output text",
usage_metadata={
"input_tokens": 0,
"output_tokens": 240,
"total_tokens": 590,
"input_token_details": {
"audio": 10,
"cache_creation": 200,
"cache_read": 100,
},
"output_token_details": {
"audio": 10,
"reasoning": 200,
}
}
)
)]
)
"""
if not self.returns_usage_metadata:
pytest.skip("Not implemented.")
full: Optional[AIMessageChunk] = None