Multi-Hop / Multi-Spec LLM Chain (#2549)

Add a notebook showing how to make a chain that composes multiple
OpenAPI Endpoint operations to accomplish tasks.
This commit is contained in:
William FH 2023-04-09 12:29:16 -07:00 committed by GitHub
parent d2f8ddab10
commit 5c0c5fafb2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 427 additions and 3 deletions

View File

@ -0,0 +1,292 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "c7ad998d",
"metadata": {},
"source": [
"# Multi-hop Task Execution with the NLAToolkit\n",
"\n",
"Natural Language API Toolkits (NLAToolkits) permit LangChain Agents to efficiently plan and combine calls across endpoints. This notebook demonstrates a sample composition of the Speak, Klarna, and Spoonacluar APIs.\n",
"\n",
"For a detailed walkthrough of the OpenAPI chains wrapped within the NLAToolkit, see the [OpenAPI Operation Chain](openapi.ipynb) notebook.\n",
"\n",
"### First, import dependencies and load the LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6593f793",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.requests import Requests\n",
"from langchain.tools import APIOperation, OpenAPISpec\n",
"from langchain.agents import AgentType, Tool, initialize_agent\n",
"from langchain.agents.agent_toolkits import NLAToolkit"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd720860",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Select the LLM to use. Here, we use text-davinci-003\n",
"llm = OpenAI(temperature=0, max_tokens=700) # You can swap between different core LLM's here."
]
},
{
"cell_type": "markdown",
"id": "4cadac9d",
"metadata": {
"tags": []
},
"source": [
"### Next, load the Natural Language API Toolkits"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6b208ab0",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"speak_toolkit = NLAToolkit.from_llm_and_url(llm, \"https://api.speak.com/openapi.yaml\")\n",
"klarna_toolkit = NLAToolkit.from_llm_and_url(llm, \"https://www.klarna.com/us/shopping/public/openai/v0/api-docs/\")"
]
},
{
"cell_type": "markdown",
"id": "16c7336f",
"metadata": {},
"source": [
"### Create the Agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "730a0dc2-b4d0-46d5-a1e9-583803220973",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Slightly tweak the instructions from the default agent\n",
"openapi_format_instructions = \"\"\"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: what to instruct the AI Action representative.\n",
"Observation: The Agent's response\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer. User can't see any of my observations, API responses, links, or tools.\n",
"Final Answer: the final answer to the original input question with the right amount of detail\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40a979c3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"natural_language_tools = speak_toolkit.get_tools() + klarna_toolkit.get_tools()\n",
"mrkl = initialize_agent(natural_language_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, \n",
" verbose=True, agent_kwargs={\"format_instructions\":openapi_format_instructions})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "794380ba",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"mrkl.run(\"I have an end of year party for my Italian class and have to buy some Italian clothes for it\")"
]
},
{
"cell_type": "markdown",
"id": "c61d92a8",
"metadata": {},
"source": [
"### Using Auth + Adding more Endpoints\n",
"\n",
"Some endpoints may require user authentication via things like access tokens. Here we show how to pass in the authentication information via the `Requests` wrapper object.\n",
"\n",
"Since each NLATool exposes a concisee natural language interface to its wrapped API, the top level conversational agent has an easier job incorporating each endpoint to satisfy a user's request."
]
},
{
"cell_type": "markdown",
"id": "f0d132cc",
"metadata": {},
"source": [
"**Adding the Spoonacular endpoints.**\n",
"\n",
"1. Go to the [Spoonacular API Console](https://spoonacular.com/food-api/console#Profile) and make a free account.\n",
"2. Click on `Profile` and copy your API key below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2368b9c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"spoonacular_api_key = \"\" # Copy from the API Console"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fbd97c28-fef6-41b5-9600-a9611a32bfb3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"requests = Requests(headers={\"x-api-key\": spoonacular_api_key})\n",
"spoonacular_toolkit = NLAToolkit.from_llm_and_url(\n",
" llm, \n",
" \"https://spoonacular.com/application/frontend/downloads/spoonacular-openapi-3.json\",\n",
" requests=requests,\n",
" max_text_length=1800, # If you want to truncate the response text\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81a6edac",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"natural_language_api_tools = (speak_toolkit.get_tools() \n",
" + klarna_toolkit.get_tools() \n",
" + spoonacular_toolkit.get_tools()[:30]\n",
" )\n",
"print(f\"{len(natural_language_api_tools)} tools loaded.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "831f772d-5cd1-4467-b494-a3172af2ff48",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Create an agent with the new tools\n",
"mrkl = initialize_agent(natural_language_api_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, \n",
" verbose=True, agent_kwargs={\"format_instructions\":openapi_format_instructions})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0385e04b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Make the query more complex!\n",
"user_input = (\n",
" \"I'm learning Italian, and my language class is having an end of year party... \"\n",
" \" Could you help me find an Italian outfit to wear and\"\n",
" \" an appropriate recipe to prepare so I can present for the class in Italian?\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ebd3f55",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"mrkl.run(user_input)"
]
},
{
"cell_type": "markdown",
"id": "a2959462",
"metadata": {},
"source": [
"## Thank you!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fcda5f0",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"natural_language_api_tools[1].run(\"Tell the LangChain audience to 'enjoy the meal' in Italian, please!\")['output']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab366dc0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -3,6 +3,7 @@
from langchain.agents.agent_toolkits.csv.base import create_csv_agent
from langchain.agents.agent_toolkits.json.base import create_json_agent
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.agent_toolkits.nla.toolkit import NLAToolkit
from langchain.agents.agent_toolkits.openapi.base import create_openapi_agent
from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
@ -28,6 +29,7 @@ __all__ = [
"create_vectorstore_agent",
"JsonToolkit",
"SQLDatabaseToolkit",
"NLAToolkit",
"OpenAPIToolkit",
"VectorStoreToolkit",
"create_vectorstore_router_agent",

View File

@ -0,0 +1,54 @@
"""Tool for interacting with a single API with natural language efinition."""
from typing import Any, Optional
from langchain.agents.tools import Tool
from langchain.chains.api.openapi.chain import OpenAPIEndpointChain
from langchain.llms.base import BaseLLM
from langchain.requests import Requests
from langchain.tools.openapi.utils.api_models import APIOperation
from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec
class NLATool(Tool):
"""Natural Language API Tool."""
@classmethod
def from_open_api_endpoint_chain(
cls, chain: OpenAPIEndpointChain, api_title: str
) -> "NLATool":
"""Convert an endpoint chain to an API endpoint tool."""
expanded_name = (
f'{api_title.replace(" ", "_")}.{chain.api_operation.operation_id}'
)
description = (
f"I'm an AI from {api_title}. Instruct what you want,"
" and I'll assist via an API with description:"
f" {chain.api_operation.description}"
)
return cls(name=expanded_name, func=chain.run, description=description)
@classmethod
def from_llm_and_method(
cls,
llm: BaseLLM,
path: str,
method: str,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> "NLATool":
"""Instantiate the tool from the specified path and method."""
api_operation = APIOperation.from_openapi_spec(spec, path, method)
chain = OpenAPIEndpointChain.from_api_operation(
api_operation,
llm,
requests=requests,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
return cls.from_open_api_endpoint_chain(chain, spec.info.title)

View File

@ -0,0 +1,66 @@
"""Toolkit for interacting with API's using natural language."""
from typing import Any, List, Optional, Sequence
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.agents.agent_toolkits.nla.tool import NLATool
from langchain.llms.base import BaseLLM
from langchain.requests import Requests
from langchain.tools.base import BaseTool
from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec
class NLAToolkit(BaseToolkit):
"""Natural Language API Toolkit Definition."""
nla_tools: Sequence[NLATool] = Field(...)
"""List of API Endpoint Tools."""
def get_tools(self) -> List[BaseTool]:
"""Get the tools for all the API operations."""
return list(self.nla_tools)
@classmethod
def from_llm_and_spec(
cls,
llm: BaseLLM,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any
) -> "NLAToolkit":
"""Instantiate the toolkit by creating tools for each operation."""
http_operation_tools: List[NLATool] = []
if not spec.paths:
return cls(nla_tools=http_operation_tools)
for path in spec.paths:
for method in spec.get_methods_for_path(path):
endpoint_tool = NLATool.from_llm_and_method(
llm=llm,
path=path,
method=method,
spec=spec,
requests=requests,
verbose=verbose,
**kwargs
)
http_operation_tools.append(endpoint_tool)
return cls(nla_tools=http_operation_tools)
@classmethod
def from_llm_and_url(
cls,
llm: BaseLLM,
open_api_url: str,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any
) -> "NLAToolkit":
"""Instantiate the toolkit from an OpenAPI Spec URL"""
spec = OpenAPISpec.from_url(open_api_url)
return cls.from_llm_and_spec(
llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs
)

View File

@ -2,7 +2,7 @@
from __future__ import annotations
import json
from typing import Dict, List, NamedTuple, Optional, cast
from typing import Any, Dict, List, NamedTuple, Optional, cast
from pydantic import BaseModel, Field
from requests import Response
@ -35,6 +35,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
return_intermediate_steps: bool = False
instructions_key: str = "instructions" #: :meta private:
output_key: str = "output" #: :meta private:
max_text_length: Optional[int] = Field(ge=0) #: :meta private:
@property
def input_keys(self) -> List[str]:
@ -108,6 +109,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
intermediate_steps = {}
instructions = inputs[self.instructions_key]
instructions = instructions[: self.max_text_length]
_api_arguments = self.api_request_chain.predict_and_parse(
instructions=instructions
)
@ -137,6 +139,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
response_text = api_response.text
except Exception as e:
response_text = f"Error with message {str(e)}"
response_text = response_text[: self.max_text_length]
intermediate_steps["response_text"] = response_text
self.callback_manager.on_text(
response_text, color="blue", end="\n", verbose=self.verbose
@ -160,6 +163,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
llm: BaseLLM,
requests: Optional[Requests] = None,
return_intermediate_steps: bool = False,
**kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpoint from a spec at the specified url."""
@ -169,6 +173,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
requests=requests,
llm=llm,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
@classmethod
@ -179,6 +184,7 @@ class OpenAPIEndpointChain(Chain, BaseModel):
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any
# TODO: Handle async
) -> "OpenAPIEndpointChain":
"""Create an OpenAPIEndpointChain from an operation and a spec."""
@ -200,4 +206,5 @@ class OpenAPIEndpointChain(Chain, BaseModel):
param_mapping=param_mapping,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)

View File

@ -50,7 +50,7 @@ Response Error: ```json
{{"response": "What you did and a concise statement of the resulting error. If it can be easily fixed, provide a suggestion."}}
```
You MUST respond as a markdown json code block.
You MUST respond as a markdown json code block. API_RESPONSE and other information is not visible to the user.
Begin:
---

View File

@ -475,9 +475,12 @@ class APIOperation(BaseModel):
if request_body is not None
else None
)
description = operation.description or operation.summary
if not description and spec.paths is not None:
description = spec.paths[path].description or spec.paths[path].summary
return cls(
operation_id=operation_id,
description=operation.description,
description=description,
base_url=spec.base_url,
path=path,
method=method,