mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
AWS Bedrock RAG template (#12450)
This commit is contained in:
3
templates/rag-aws-bedrock/rag_aws_bedrock/__init__.py
Normal file
3
templates/rag-aws-bedrock/rag_aws_bedrock/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from rag_aws_bedrock.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
73
templates/rag-aws-bedrock/rag_aws_bedrock/chain.py
Normal file
73
templates/rag-aws-bedrock/rag_aws_bedrock/chain.py
Normal file
@@ -0,0 +1,73 @@
|
||||
import os
|
||||
|
||||
from langchain.embeddings import BedrockEmbeddings
|
||||
from langchain.llms.bedrock import Bedrock
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import Pinecone
|
||||
from utils import bedrock
|
||||
|
||||
if os.environ.get("PINECONE_API_KEY", None) is None:
|
||||
raise Exception("Missing `PINECONE_API_KEY` environment variable.")
|
||||
|
||||
if os.environ.get("PINECONE_ENVIRONMENT", None) is None:
|
||||
raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.")
|
||||
|
||||
if os.environ.get("AWS_DEFAULT_REGION", None) is None:
|
||||
raise Exception("Missing `AWS_DEFAULT_REGION` environment variable.")
|
||||
|
||||
if os.environ.get("AWS_PROFILE", None) is None:
|
||||
raise Exception("Missing `AWS_PROFILE` environment variable.")
|
||||
|
||||
if os.environ.get("BEDROCK_ASSUME_ROLE", None) is None:
|
||||
raise Exception("Missing `BEDROCK_ASSUME_ROLE` environment variable.")
|
||||
|
||||
PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test")
|
||||
|
||||
### Ingest code - you may need to run this the first time
|
||||
# Load
|
||||
# from langchain.document_loaders import WebBaseLoader
|
||||
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||||
# data = loader.load()
|
||||
|
||||
# # Split
|
||||
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
# all_splits = text_splitter.split_documents(data)
|
||||
|
||||
# # Add to vectorDB
|
||||
# vectorstore = Pinecone.from_documents(
|
||||
# documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME
|
||||
# )
|
||||
# retriever = vectorstore.as_retriever()
|
||||
|
||||
# Set LLM and embeddings
|
||||
boto3_bedrock = bedrock.get_bedrock_client(
|
||||
assumed_role=os.environ.get("BEDROCK_ASSUME_ROLE", None),
|
||||
region=os.environ.get("AWS_DEFAULT_REGION", None)
|
||||
)
|
||||
model = Bedrock(model_id="anthropic.claude-v2",
|
||||
client=boto3_bedrock,
|
||||
model_kwargs={'max_tokens_to_sample':200})
|
||||
bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1",
|
||||
client=boto3_bedrock)
|
||||
|
||||
# Set vectostore
|
||||
vectorstore = Pinecone.from_existing_index(PINECONE_INDEX_NAME, bedrock_embeddings)
|
||||
retriever = vectorstore.as_retriever()
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
Reference in New Issue
Block a user