AWS Bedrock RAG template (#12450)

This commit is contained in:
Lance Martin
2023-10-27 13:15:54 -07:00
committed by GitHub
parent 5d40e36c75
commit 5c564e62e1
11 changed files with 2602 additions and 9 deletions

View File

@@ -0,0 +1,3 @@
from rag_aws_bedrock.chain import chain
__all__ = ["chain"]

View File

@@ -0,0 +1,73 @@
import os
from langchain.embeddings import BedrockEmbeddings
from langchain.llms.bedrock import Bedrock
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.vectorstores import Pinecone
from utils import bedrock
if os.environ.get("PINECONE_API_KEY", None) is None:
raise Exception("Missing `PINECONE_API_KEY` environment variable.")
if os.environ.get("PINECONE_ENVIRONMENT", None) is None:
raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.")
if os.environ.get("AWS_DEFAULT_REGION", None) is None:
raise Exception("Missing `AWS_DEFAULT_REGION` environment variable.")
if os.environ.get("AWS_PROFILE", None) is None:
raise Exception("Missing `AWS_PROFILE` environment variable.")
if os.environ.get("BEDROCK_ASSUME_ROLE", None) is None:
raise Exception("Missing `BEDROCK_ASSUME_ROLE` environment variable.")
PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test")
### Ingest code - you may need to run this the first time
# Load
# from langchain.document_loaders import WebBaseLoader
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# data = loader.load()
# # Split
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
# all_splits = text_splitter.split_documents(data)
# # Add to vectorDB
# vectorstore = Pinecone.from_documents(
# documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME
# )
# retriever = vectorstore.as_retriever()
# Set LLM and embeddings
boto3_bedrock = bedrock.get_bedrock_client(
assumed_role=os.environ.get("BEDROCK_ASSUME_ROLE", None),
region=os.environ.get("AWS_DEFAULT_REGION", None)
)
model = Bedrock(model_id="anthropic.claude-v2",
client=boto3_bedrock,
model_kwargs={'max_tokens_to_sample':200})
bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1",
client=boto3_bedrock)
# Set vectostore
vectorstore = Pinecone.from_existing_index(PINECONE_INDEX_NAME, bedrock_embeddings)
retriever = vectorstore.as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)