mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-29 06:23:20 +00:00
Harrison/base agent without docs (#2166)
This commit is contained in:
parent
1b7cfd7222
commit
5c907d9998
@ -19,13 +19,183 @@ from langchain.llms.base import BaseLLM
|
|||||||
from langchain.prompts.base import BasePromptTemplate
|
from langchain.prompts.base import BasePromptTemplate
|
||||||
from langchain.prompts.few_shot import FewShotPromptTemplate
|
from langchain.prompts.few_shot import FewShotPromptTemplate
|
||||||
from langchain.prompts.prompt import PromptTemplate
|
from langchain.prompts.prompt import PromptTemplate
|
||||||
from langchain.schema import AgentAction, AgentFinish, BaseMessage
|
from langchain.schema import AgentAction, AgentFinish, BaseMessage, BaseOutputParser
|
||||||
from langchain.tools.base import BaseTool
|
from langchain.tools.base import BaseTool
|
||||||
|
|
||||||
logger = logging.getLogger()
|
logger = logging.getLogger()
|
||||||
|
|
||||||
|
|
||||||
class Agent(BaseModel):
|
class BaseSingleActionAgent(BaseModel):
|
||||||
|
"""Base Agent class."""
|
||||||
|
|
||||||
|
@property
|
||||||
|
def return_values(self) -> List[str]:
|
||||||
|
"""Return values of the agent."""
|
||||||
|
return ["output"]
|
||||||
|
|
||||||
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def plan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[AgentAction, AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Action specifying what tool to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
async def aplan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[AgentAction, AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Action specifying what tool to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def input_keys(self) -> List[str]:
|
||||||
|
"""Return the input keys.
|
||||||
|
|
||||||
|
:meta private:
|
||||||
|
"""
|
||||||
|
|
||||||
|
def return_stopped_response(
|
||||||
|
self,
|
||||||
|
early_stopping_method: str,
|
||||||
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> AgentFinish:
|
||||||
|
"""Return response when agent has been stopped due to max iterations."""
|
||||||
|
if early_stopping_method == "force":
|
||||||
|
# `force` just returns a constant string
|
||||||
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Got unsupported early_stopping_method `{early_stopping_method}`"
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _agent_type(self) -> str:
|
||||||
|
"""Return Identifier of agent type."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def dict(self, **kwargs: Any) -> Dict:
|
||||||
|
"""Return dictionary representation of agent."""
|
||||||
|
_dict = super().dict()
|
||||||
|
_dict["_type"] = self._agent_type
|
||||||
|
return _dict
|
||||||
|
|
||||||
|
def save(self, file_path: Union[Path, str]) -> None:
|
||||||
|
"""Save the agent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_path: Path to file to save the agent to.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
# If working with agent executor
|
||||||
|
agent.agent.save(file_path="path/agent.yaml")
|
||||||
|
"""
|
||||||
|
# Convert file to Path object.
|
||||||
|
if isinstance(file_path, str):
|
||||||
|
save_path = Path(file_path)
|
||||||
|
else:
|
||||||
|
save_path = file_path
|
||||||
|
|
||||||
|
directory_path = save_path.parent
|
||||||
|
directory_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Fetch dictionary to save
|
||||||
|
agent_dict = self.dict()
|
||||||
|
|
||||||
|
if save_path.suffix == ".json":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
json.dump(agent_dict, f, indent=4)
|
||||||
|
elif save_path.suffix == ".yaml":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
yaml.dump(agent_dict, f, default_flow_style=False)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"{save_path} must be json or yaml")
|
||||||
|
|
||||||
|
def tool_run_logging_kwargs(self) -> Dict:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
class AgentOutputParser(BaseOutputParser):
|
||||||
|
@abstractmethod
|
||||||
|
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||||
|
"""Parse text into agent action/finish."""
|
||||||
|
|
||||||
|
|
||||||
|
class LLMSingleActionAgent(BaseSingleActionAgent):
|
||||||
|
llm_chain: LLMChain
|
||||||
|
output_parser: AgentOutputParser
|
||||||
|
stop: List[str]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def input_keys(self) -> List[str]:
|
||||||
|
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
|
||||||
|
|
||||||
|
def plan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[AgentAction, AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Action specifying what tool to use.
|
||||||
|
"""
|
||||||
|
output = self.llm_chain.run(
|
||||||
|
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
||||||
|
)
|
||||||
|
return self.output_parser.parse(output)
|
||||||
|
|
||||||
|
async def aplan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[AgentAction, AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Action specifying what tool to use.
|
||||||
|
"""
|
||||||
|
output = await self.llm_chain.arun(
|
||||||
|
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
||||||
|
)
|
||||||
|
return self.output_parser.parse(output)
|
||||||
|
|
||||||
|
def tool_run_logging_kwargs(self) -> Dict:
|
||||||
|
return {
|
||||||
|
"llm_prefix": "",
|
||||||
|
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Agent(BaseSingleActionAgent):
|
||||||
"""Class responsible for calling the language model and deciding the action.
|
"""Class responsible for calling the language model and deciding the action.
|
||||||
|
|
||||||
This is driven by an LLMChain. The prompt in the LLMChain MUST include
|
This is driven by an LLMChain. The prompt in the LLMChain MUST include
|
||||||
@ -35,7 +205,13 @@ class Agent(BaseModel):
|
|||||||
|
|
||||||
llm_chain: LLMChain
|
llm_chain: LLMChain
|
||||||
allowed_tools: Optional[List[str]] = None
|
allowed_tools: Optional[List[str]] = None
|
||||||
return_values: List[str] = ["output"]
|
|
||||||
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
||||||
|
return self.allowed_tools
|
||||||
|
|
||||||
|
@property
|
||||||
|
def return_values(self) -> List[str]:
|
||||||
|
return ["output"]
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
|
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
|
||||||
@ -248,55 +424,17 @@ class Agent(BaseModel):
|
|||||||
f"got {early_stopping_method}"
|
f"got {early_stopping_method}"
|
||||||
)
|
)
|
||||||
|
|
||||||
@property
|
def tool_run_logging_kwargs(self) -> Dict:
|
||||||
@abstractmethod
|
return {
|
||||||
def _agent_type(self) -> str:
|
"llm_prefix": self.llm_prefix,
|
||||||
"""Return Identifier of agent type."""
|
"observation_prefix": self.observation_prefix,
|
||||||
|
}
|
||||||
def dict(self, **kwargs: Any) -> Dict:
|
|
||||||
"""Return dictionary representation of agent."""
|
|
||||||
_dict = super().dict()
|
|
||||||
_dict["_type"] = self._agent_type
|
|
||||||
return _dict
|
|
||||||
|
|
||||||
def save(self, file_path: Union[Path, str]) -> None:
|
|
||||||
"""Save the agent.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
file_path: Path to file to save the agent to.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
# If working with agent executor
|
|
||||||
agent.agent.save(file_path="path/agent.yaml")
|
|
||||||
"""
|
|
||||||
# Convert file to Path object.
|
|
||||||
if isinstance(file_path, str):
|
|
||||||
save_path = Path(file_path)
|
|
||||||
else:
|
|
||||||
save_path = file_path
|
|
||||||
|
|
||||||
directory_path = save_path.parent
|
|
||||||
directory_path.mkdir(parents=True, exist_ok=True)
|
|
||||||
|
|
||||||
# Fetch dictionary to save
|
|
||||||
agent_dict = self.dict()
|
|
||||||
|
|
||||||
if save_path.suffix == ".json":
|
|
||||||
with open(file_path, "w") as f:
|
|
||||||
json.dump(agent_dict, f, indent=4)
|
|
||||||
elif save_path.suffix == ".yaml":
|
|
||||||
with open(file_path, "w") as f:
|
|
||||||
yaml.dump(agent_dict, f, default_flow_style=False)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"{save_path} must be json or yaml")
|
|
||||||
|
|
||||||
|
|
||||||
class AgentExecutor(Chain, BaseModel):
|
class AgentExecutor(Chain, BaseModel):
|
||||||
"""Consists of an agent using tools."""
|
"""Consists of an agent using tools."""
|
||||||
|
|
||||||
agent: Agent
|
agent: BaseSingleActionAgent
|
||||||
tools: Sequence[BaseTool]
|
tools: Sequence[BaseTool]
|
||||||
return_intermediate_steps: bool = False
|
return_intermediate_steps: bool = False
|
||||||
max_iterations: Optional[int] = 15
|
max_iterations: Optional[int] = 15
|
||||||
@ -305,7 +443,7 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
@classmethod
|
@classmethod
|
||||||
def from_agent_and_tools(
|
def from_agent_and_tools(
|
||||||
cls,
|
cls,
|
||||||
agent: Agent,
|
agent: BaseSingleActionAgent,
|
||||||
tools: Sequence[BaseTool],
|
tools: Sequence[BaseTool],
|
||||||
callback_manager: Optional[BaseCallbackManager] = None,
|
callback_manager: Optional[BaseCallbackManager] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
@ -320,10 +458,11 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
"""Validate that tools are compatible with agent."""
|
"""Validate that tools are compatible with agent."""
|
||||||
agent = values["agent"]
|
agent = values["agent"]
|
||||||
tools = values["tools"]
|
tools = values["tools"]
|
||||||
if agent.allowed_tools is not None:
|
allowed_tools = agent.get_allowed_tools()
|
||||||
if set(agent.allowed_tools) != set([tool.name for tool in tools]):
|
if allowed_tools is not None:
|
||||||
|
if set(allowed_tools) != set([tool.name for tool in tools]):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Allowed tools ({agent.allowed_tools}) different than "
|
f"Allowed tools ({allowed_tools}) different than "
|
||||||
f"provided tools ({[tool.name for tool in tools]})"
|
f"provided tools ({[tool.name for tool in tools]})"
|
||||||
)
|
)
|
||||||
return values
|
return values
|
||||||
@ -418,22 +557,17 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
tool = name_to_tool_map[output.tool]
|
tool = name_to_tool_map[output.tool]
|
||||||
return_direct = tool.return_direct
|
return_direct = tool.return_direct
|
||||||
color = color_mapping[output.tool]
|
color = color_mapping[output.tool]
|
||||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
if return_direct:
|
||||||
|
tool_run_kwargs["llm_prefix"] = ""
|
||||||
# We then call the tool on the tool input to get an observation
|
# We then call the tool on the tool input to get an observation
|
||||||
observation = tool.run(
|
observation = tool.run(
|
||||||
output.tool_input,
|
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
||||||
verbose=self.verbose,
|
|
||||||
color=color,
|
|
||||||
llm_prefix=llm_prefix,
|
|
||||||
observation_prefix=self.agent.observation_prefix,
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
observation = InvalidTool().run(
|
observation = InvalidTool().run(
|
||||||
output.tool,
|
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
||||||
verbose=self.verbose,
|
|
||||||
color=None,
|
|
||||||
llm_prefix="",
|
|
||||||
observation_prefix=self.agent.observation_prefix,
|
|
||||||
)
|
)
|
||||||
return output, observation
|
return output, observation
|
||||||
|
|
||||||
@ -467,22 +601,17 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
tool = name_to_tool_map[output.tool]
|
tool = name_to_tool_map[output.tool]
|
||||||
return_direct = tool.return_direct
|
return_direct = tool.return_direct
|
||||||
color = color_mapping[output.tool]
|
color = color_mapping[output.tool]
|
||||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
if return_direct:
|
||||||
|
tool_run_kwargs["llm_prefix"] = ""
|
||||||
# We then call the tool on the tool input to get an observation
|
# We then call the tool on the tool input to get an observation
|
||||||
observation = await tool.arun(
|
observation = await tool.arun(
|
||||||
output.tool_input,
|
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
||||||
verbose=self.verbose,
|
|
||||||
color=color,
|
|
||||||
llm_prefix=llm_prefix,
|
|
||||||
observation_prefix=self.agent.observation_prefix,
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
observation = await InvalidTool().arun(
|
observation = await InvalidTool().arun(
|
||||||
output.tool,
|
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
||||||
verbose=self.verbose,
|
|
||||||
color=None,
|
|
||||||
llm_prefix="",
|
|
||||||
observation_prefix=self.agent.observation_prefix,
|
|
||||||
)
|
)
|
||||||
return_direct = False
|
return_direct = False
|
||||||
return output, observation
|
return output, observation
|
||||||
|
@ -74,9 +74,11 @@ class StdOutCallbackHandler(BaseCallbackHandler):
|
|||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""If not the final action, print out observation."""
|
"""If not the final action, print out observation."""
|
||||||
print_text(f"\n{observation_prefix}")
|
if observation_prefix:
|
||||||
|
print_text(f"\n{observation_prefix}")
|
||||||
print_text(output, color=color if color else self.color)
|
print_text(output, color=color if color else self.color)
|
||||||
print_text(f"\n{llm_prefix}")
|
if llm_prefix:
|
||||||
|
print_text(f"\n{llm_prefix}")
|
||||||
|
|
||||||
def on_tool_error(
|
def on_tool_error(
|
||||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||||
|
@ -199,7 +199,7 @@ class Chain(BaseModel, ABC):
|
|||||||
"""Call the chain on all inputs in the list."""
|
"""Call the chain on all inputs in the list."""
|
||||||
return [self(inputs) for inputs in input_list]
|
return [self(inputs) for inputs in input_list]
|
||||||
|
|
||||||
def run(self, *args: str, **kwargs: str) -> str:
|
def run(self, *args: Any, **kwargs: Any) -> str:
|
||||||
"""Run the chain as text in, text out or multiple variables, text out."""
|
"""Run the chain as text in, text out or multiple variables, text out."""
|
||||||
if len(self.output_keys) != 1:
|
if len(self.output_keys) != 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -220,7 +220,7 @@ class Chain(BaseModel, ABC):
|
|||||||
f" but not both. Got args: {args} and kwargs: {kwargs}."
|
f" but not both. Got args: {args} and kwargs: {kwargs}."
|
||||||
)
|
)
|
||||||
|
|
||||||
async def arun(self, *args: str, **kwargs: str) -> str:
|
async def arun(self, *args: Any, **kwargs: Any) -> str:
|
||||||
"""Run the chain as text in, text out or multiple variables, text out."""
|
"""Run the chain as text in, text out or multiple variables, text out."""
|
||||||
if len(self.output_keys) != 1:
|
if len(self.output_keys) != 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
@ -144,9 +144,9 @@ class BasePromptTemplate(BaseModel, ABC):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@abstractmethod
|
|
||||||
def _prompt_type(self) -> str:
|
def _prompt_type(self) -> str:
|
||||||
"""Return the prompt type key."""
|
"""Return the prompt type key."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def dict(self, **kwargs: Any) -> Dict:
|
def dict(self, **kwargs: Any) -> Dict:
|
||||||
"""Return dictionary representation of prompt."""
|
"""Return dictionary representation of prompt."""
|
||||||
|
@ -149,7 +149,7 @@ def test_agent_with_callbacks_local() -> None:
|
|||||||
callback_manager=manager,
|
callback_manager=manager,
|
||||||
)
|
)
|
||||||
|
|
||||||
agent.agent.llm_chain.verbose = True
|
agent.agent.llm_chain.verbose = True # type: ignore
|
||||||
|
|
||||||
output = agent.run("when was langchain made")
|
output = agent.run("when was langchain made")
|
||||||
assert output == "curses foiled again"
|
assert output == "curses foiled again"
|
||||||
@ -285,8 +285,8 @@ def test_agent_with_new_prefix_suffix() -> None:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# avoids "BasePromptTemplate" has no attribute "template" error
|
# avoids "BasePromptTemplate" has no attribute "template" error
|
||||||
assert hasattr(agent.agent.llm_chain.prompt, "template")
|
assert hasattr(agent.agent.llm_chain.prompt, "template") # type: ignore
|
||||||
prompt_str = agent.agent.llm_chain.prompt.template
|
prompt_str = agent.agent.llm_chain.prompt.template # type: ignore
|
||||||
assert prompt_str.startswith(prefix), "Prompt does not start with prefix"
|
assert prompt_str.startswith(prefix), "Prompt does not start with prefix"
|
||||||
assert prompt_str.endswith(suffix), "Prompt does not end with suffix"
|
assert prompt_str.endswith(suffix), "Prompt does not end with suffix"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user