mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-17 08:29:28 +00:00
Adding a SagemakerEndpoint class (#953)
This commit is contained in:
parent
e323d0cfb1
commit
5cba2a1ecc
@ -22,7 +22,7 @@ from langchain.chains import (
|
||||
VectorDBQAWithSourcesChain,
|
||||
)
|
||||
from langchain.docstore import InMemoryDocstore, Wikipedia
|
||||
from langchain.llms import Anthropic, Cohere, HuggingFaceHub, OpenAI
|
||||
from langchain.llms import Anthropic, Cohere, HuggingFaceHub, OpenAI, SagemakerEndpoint
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.prompts import (
|
||||
BasePromptTemplate,
|
||||
@ -60,6 +60,7 @@ __all__ = [
|
||||
"ReActChain",
|
||||
"Wikipedia",
|
||||
"HuggingFaceHub",
|
||||
"SagemakerEndpoint",
|
||||
"HuggingFacePipeline",
|
||||
"SQLDatabase",
|
||||
"SQLDatabaseChain",
|
||||
|
@ -6,6 +6,7 @@ from langchain.llms.anthropic import Anthropic
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.llms.cohere import Cohere
|
||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||
from langchain.llms.sagemaker_endpoint import SagemakerEndpoint
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.llms.nlpcloud import NLPCloud
|
||||
from langchain.llms.openai import AzureOpenAI, OpenAI
|
||||
@ -16,6 +17,7 @@ __all__ = [
|
||||
"NLPCloud",
|
||||
"OpenAI",
|
||||
"HuggingFaceHub",
|
||||
"SagemakerEndpoint",
|
||||
"HuggingFacePipeline",
|
||||
"AI21",
|
||||
"AzureOpenAI",
|
||||
@ -26,6 +28,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
||||
"anthropic": Anthropic,
|
||||
"cohere": Cohere,
|
||||
"huggingface_hub": HuggingFaceHub,
|
||||
"sagemaker_endpoint": SagemakerEndpoint,
|
||||
"nlpcloud": NLPCloud,
|
||||
"openai": OpenAI,
|
||||
"huggingface_pipeline": HuggingFacePipeline,
|
||||
|
130
langchain/llms/sagemaker_endpoint.py
Normal file
130
langchain/llms/sagemaker_endpoint.py
Normal file
@ -0,0 +1,130 @@
|
||||
"""Wrapper around Sagemaker InvokeEndpoint API."""
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
import boto3
|
||||
import json
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
VALID_TASKS = ("text2text-generation", "text-generation")
|
||||
|
||||
|
||||
class SagemakerEndpoint(LLM, BaseModel):
|
||||
"""Wrapper around custom Sagemaker Inference Endpoints.
|
||||
|
||||
To use, you should pass the AWS IAM Role and Role Session Name as named parameters to the constructor.
|
||||
|
||||
Only supports `text-generation` and `text2text-generation` for now.
|
||||
"""
|
||||
|
||||
"""
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import SagemakerEndpoint
|
||||
endpoint_name = (
|
||||
"https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/abcdefghijklmnop/invocations"
|
||||
)
|
||||
se = SagemakerEndpoint(
|
||||
endpoint_name=endpoint_name,
|
||||
role_arn="role_arn",
|
||||
role_session_name="role_session_name"
|
||||
)
|
||||
"""
|
||||
|
||||
endpoint_name: str = ""
|
||||
"""# The name of the endpoint. The name must be unique within an AWS Region in your AWS account."""
|
||||
task: Optional[str] = None
|
||||
"""Task to call the model with. Should be a task that returns `generated_text`."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Key word arguments to pass to the model."""
|
||||
|
||||
role_arn: Optional[str] = None
|
||||
role_session_name: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
**{"endpoint_name": self.endpoint_name, "task": self.task},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "sagemaker_endpoint"
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to Sagemaker inference endpoint.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = se("Tell me a joke.")
|
||||
"""
|
||||
|
||||
session = boto3.Session(profile_name="test-profile-name")
|
||||
sagemaker_runtime = session.client("sagemaker-runtime", region_name="us-west-2")
|
||||
|
||||
# TODO: use AWS IAM assumed roles to authenticate from the EC2 instance
|
||||
# def role_arn_to_session(**args):
|
||||
# """
|
||||
# Usage :
|
||||
# session = role_arn_to_session(
|
||||
# RoleArn='arn:aws:iam::012345678901:role/example-role',
|
||||
# RoleSessionName='ExampleSessionName')
|
||||
# client = session.client('sqs')
|
||||
# """
|
||||
# client = boto3.client('sts')
|
||||
# response = client.assume_role(**args)
|
||||
# return boto3.Session(
|
||||
# aws_access_key_id=response['Credentials']['AccessKeyId'],
|
||||
# aws_secret_access_key=response['Credentials']['SecretAccessKey'],
|
||||
# aws_session_token=response['Credentials']['SessionToken'])
|
||||
|
||||
# session = role_arn_to_session(RoleArn="$role-arn",
|
||||
# RoleSessionName="test-role-session-name")
|
||||
# sagemaker_runtime = session.client("sagemaker-runtime", region_name="us-west-2")
|
||||
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
|
||||
# payload samples
|
||||
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
|
||||
|
||||
input_en = json.dumps(parameter_payload).encode('utf-8')
|
||||
|
||||
# send request
|
||||
try:
|
||||
response = sagemaker_runtime.invoke_endpoint(
|
||||
EndpointName=self.endpoint_name,
|
||||
Body=input_en,
|
||||
ContentType='application/json'
|
||||
)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
|
||||
if stop is not None:
|
||||
# This is a bit hacky, but I can't figure out a better way to enforce
|
||||
# stop tokens when making calls to huggingface_hub.
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
|
||||
response_json = json.loads(response['Body'].read().decode('utf-8'))
|
||||
|
||||
return response_json[0]["generated_text"]
|
Loading…
Reference in New Issue
Block a user