Adding a SagemakerEndpoint class (#953)

This commit is contained in:
Nimisha Mehta 2023-02-09 23:22:01 -08:00 committed by GitHub
parent e323d0cfb1
commit 5cba2a1ecc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 135 additions and 1 deletions

View File

@ -22,7 +22,7 @@ from langchain.chains import (
VectorDBQAWithSourcesChain,
)
from langchain.docstore import InMemoryDocstore, Wikipedia
from langchain.llms import Anthropic, Cohere, HuggingFaceHub, OpenAI
from langchain.llms import Anthropic, Cohere, HuggingFaceHub, OpenAI, SagemakerEndpoint
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.prompts import (
BasePromptTemplate,
@ -60,6 +60,7 @@ __all__ = [
"ReActChain",
"Wikipedia",
"HuggingFaceHub",
"SagemakerEndpoint",
"HuggingFacePipeline",
"SQLDatabase",
"SQLDatabaseChain",

View File

@ -6,6 +6,7 @@ from langchain.llms.anthropic import Anthropic
from langchain.llms.base import BaseLLM
from langchain.llms.cohere import Cohere
from langchain.llms.huggingface_hub import HuggingFaceHub
from langchain.llms.sagemaker_endpoint import SagemakerEndpoint
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.llms.nlpcloud import NLPCloud
from langchain.llms.openai import AzureOpenAI, OpenAI
@ -16,6 +17,7 @@ __all__ = [
"NLPCloud",
"OpenAI",
"HuggingFaceHub",
"SagemakerEndpoint",
"HuggingFacePipeline",
"AI21",
"AzureOpenAI",
@ -26,6 +28,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"anthropic": Anthropic,
"cohere": Cohere,
"huggingface_hub": HuggingFaceHub,
"sagemaker_endpoint": SagemakerEndpoint,
"nlpcloud": NLPCloud,
"openai": OpenAI,
"huggingface_pipeline": HuggingFacePipeline,

View File

@ -0,0 +1,130 @@
"""Wrapper around Sagemaker InvokeEndpoint API."""
from typing import Any, Dict, List, Mapping, Optional
import boto3
import json
from pydantic import BaseModel, Extra, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
VALID_TASKS = ("text2text-generation", "text-generation")
class SagemakerEndpoint(LLM, BaseModel):
"""Wrapper around custom Sagemaker Inference Endpoints.
To use, you should pass the AWS IAM Role and Role Session Name as named parameters to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
"""
"""
Example:
.. code-block:: python
from langchain import SagemakerEndpoint
endpoint_name = (
"https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/abcdefghijklmnop/invocations"
)
se = SagemakerEndpoint(
endpoint_name=endpoint_name,
role_arn="role_arn",
role_session_name="role_session_name"
)
"""
endpoint_name: str = ""
"""# The name of the endpoint. The name must be unique within an AWS Region in your AWS account."""
task: Optional[str] = None
"""Task to call the model with. Should be a task that returns `generated_text`."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
role_arn: Optional[str] = None
role_session_name: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_name": self.endpoint_name, "task": self.task},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "sagemaker_endpoint"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to Sagemaker inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = se("Tell me a joke.")
"""
session = boto3.Session(profile_name="test-profile-name")
sagemaker_runtime = session.client("sagemaker-runtime", region_name="us-west-2")
# TODO: use AWS IAM assumed roles to authenticate from the EC2 instance
# def role_arn_to_session(**args):
# """
# Usage :
# session = role_arn_to_session(
# RoleArn='arn:aws:iam::012345678901:role/example-role',
# RoleSessionName='ExampleSessionName')
# client = session.client('sqs')
# """
# client = boto3.client('sts')
# response = client.assume_role(**args)
# return boto3.Session(
# aws_access_key_id=response['Credentials']['AccessKeyId'],
# aws_secret_access_key=response['Credentials']['SecretAccessKey'],
# aws_session_token=response['Credentials']['SessionToken'])
# session = role_arn_to_session(RoleArn="$role-arn",
# RoleSessionName="test-role-session-name")
# sagemaker_runtime = session.client("sagemaker-runtime", region_name="us-west-2")
_model_kwargs = self.model_kwargs or {}
# payload samples
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
input_en = json.dumps(parameter_payload).encode('utf-8')
# send request
try:
response = sagemaker_runtime.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=input_en,
ContentType='application/json'
)
except Exception as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
response_json = json.loads(response['Body'].read().decode('utf-8'))
return response_json[0]["generated_text"]