mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-26 00:23:25 +00:00
docs: Add Cohere examples in documentation (#17794)
- Description: Add cohere examples to documentation - Issue:N/A - Dependencies: N/A --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
c9eac3287e
commit
5d2d80a9a8
@ -65,10 +65,10 @@ We will link to relevant docs.
|
||||
|
||||
## LLM Chain
|
||||
|
||||
For this getting started guide, we will provide two options: using OpenAI (a popular model available via API) or using a local open source model.
|
||||
We'll show how to use models available via API, like OpenAI and Cohere, and local open source models, using integrations like Ollama.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI" default>
|
||||
<TabItem value="openai" label="OpenAI (API)" default>
|
||||
|
||||
First we'll need to import the LangChain x OpenAI integration package.
|
||||
|
||||
@ -99,7 +99,7 @@ llm = ChatOpenAI(openai_api_key="...")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="local" label="Local">
|
||||
<TabItem value="local" label="Local (using Ollama)">
|
||||
|
||||
[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.
|
||||
|
||||
@ -112,6 +112,37 @@ Then, make sure the Ollama server is running. After that, you can do:
|
||||
```python
|
||||
from langchain_community.llms import Ollama
|
||||
llm = Ollama(model="llama2")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="cohere" label="Cohere (API)" default>
|
||||
|
||||
First we'll need to import the Cohere SDK package.
|
||||
|
||||
```shell
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
||||
|
||||
```shell
|
||||
export COHERE_API_KEY="..."
|
||||
```
|
||||
|
||||
We can then initialize the model:
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatCohere
|
||||
|
||||
llm = ChatCohere()
|
||||
```
|
||||
|
||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatCohere
|
||||
|
||||
llm = ChatCohere(cohere_api_key="...")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
@ -200,10 +231,10 @@ docs = loader.load()
|
||||
|
||||
Next, we need to index it into a vectorstore. This requires a few components, namely an [embedding model](/docs/modules/data_connection/text_embedding) and a [vectorstore](/docs/modules/data_connection/vectorstores).
|
||||
|
||||
For embedding models, we once again provide examples for accessing via OpenAI or via local models.
|
||||
For embedding models, we once again provide examples for accessing via API or by running local models.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI" default>
|
||||
<TabItem value="openai" label="OpenAI (API)" default>
|
||||
|
||||
Make sure you have the `langchain_openai` package installed an the appropriate environment variables set (these are the same as needed for the LLM).
|
||||
|
||||
@ -214,7 +245,7 @@ embeddings = OpenAIEmbeddings()
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="local" label="Local">
|
||||
<TabItem value="local" label="Local (using Ollama)">
|
||||
|
||||
Make sure you have Ollama running (same set up as with the LLM).
|
||||
|
||||
@ -224,6 +255,17 @@ from langchain_community.embeddings import OllamaEmbeddings
|
||||
embeddings = OllamaEmbeddings()
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="cohere" label="Cohere (API)" default>
|
||||
|
||||
Make sure you have the `cohere` package installed an the appropriate environment variables set (these are the same as needed for the LLM).
|
||||
|
||||
```python
|
||||
from langchain_community.embeddings import CohereEmbeddings
|
||||
|
||||
embeddings = CohereEmbeddings()
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
Now, we can use this embedding model to ingest documents into a vectorstore.
|
||||
|
@ -17,6 +17,11 @@ The base Embeddings class in LangChain provides two methods: one for embedding d
|
||||
|
||||
### Setup
|
||||
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI" default>
|
||||
To start we'll need to install the OpenAI partner package:
|
||||
|
||||
```bash
|
||||
@ -44,6 +49,39 @@ from langchain_openai import OpenAIEmbeddings
|
||||
embeddings_model = OpenAIEmbeddings()
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="cohere" label="Cohere">
|
||||
|
||||
To start we'll need to install the Cohere SDK package:
|
||||
|
||||
```bash
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
||||
|
||||
```shell
|
||||
export COHERE_API_KEY="..."
|
||||
```
|
||||
|
||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
|
||||
|
||||
```python
|
||||
from langchain_community.embeddings import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings(cohere_api_key="...")
|
||||
```
|
||||
|
||||
Otherwise you can initialize without any params:
|
||||
```python
|
||||
from langchain_community.embeddings import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings()
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### `embed_documents`
|
||||
#### Embed list of texts
|
||||
|
||||
|
@ -46,7 +46,7 @@ llm = ChatOpenAI(openai_api_key="...")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="local" label="Local">
|
||||
<TabItem value="local" label="Local (using Ollama)">
|
||||
|
||||
[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.
|
||||
|
||||
@ -62,6 +62,37 @@ from langchain_community.chat_models import ChatOllama
|
||||
|
||||
llm = Ollama(model="llama2")
|
||||
chat_model = ChatOllama()
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="cohere" label="Cohere">
|
||||
|
||||
First we'll need to install their partner package:
|
||||
|
||||
```shell
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
||||
|
||||
```shell
|
||||
export COHERE_API_KEY="..."
|
||||
```
|
||||
|
||||
We can then initialize the model:
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatCohere
|
||||
|
||||
llm = ChatCohere()
|
||||
```
|
||||
|
||||
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatCohere
|
||||
|
||||
llm = ChatCohere(cohere_api_key="...")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
Loading…
Reference in New Issue
Block a user