diff --git a/docs/docs/integrations/providers/pinecone.mdx b/docs/docs/integrations/providers/pinecone.mdx index e6cf0b87e2c..4275c20d2bc 100644 --- a/docs/docs/integrations/providers/pinecone.mdx +++ b/docs/docs/integrations/providers/pinecone.mdx @@ -29,11 +29,44 @@ For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook] ### Sparse Vector store +LangChain's `PineconeSparseVectorStore` enables sparse retrieval using Pinecone's sparse English model. It maps text to sparse vectors and supports adding documents and similarity search. + ```python from langchain_pinecone import PineconeSparseVectorStore + +# Initialize sparse vector store +vector_store = PineconeSparseVectorStore( + index=my_index, + embedding_model="pinecone-sparse-english-v0" +) +# Add documents +vector_store.add_documents(documents) +# Query +results = vector_store.similarity_search("your query", k=3) ``` -For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook](/docs/integrations/vectorstores/pinecone_sparse) +For a more detailed walkthrough, see the [Pinecone Sparse Vector Store notebook](/docs/integrations/vectorstores/pinecone_sparse). + +### Sparse Embedding + +LangChain's `PineconeSparseEmbeddings` provides sparse embedding generation using Pinecone's `pinecone-sparse-english-v0` model. + +```python +from langchain_pinecone.embeddings import PineconeSparseEmbeddings + +# Initialize sparse embeddings +sparse_embeddings = PineconeSparseEmbeddings( + model="pinecone-sparse-english-v0" +) +# Embed a single query (returns SparseValues) +query_embedding = sparse_embeddings.embed_query("sample text") + +# Embed multiple documents (returns list of SparseValues) +docs = ["Document 1 content", "Document 2 content"] +doc_embeddings = sparse_embeddings.embed_documents(docs) +``` + +For more detailed usage, see the [Pinecone Sparse Embeddings notebook](/docs/integrations/vectorstores/pinecone_sparse). ## Retrievers