mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 05:25:07 +00:00
Add embeddings cache (#8976)
This PR adds the ability to temporarily cache or persistently store embeddings. A notebook has been included showing how to set up the cache and how to use it with a vectorstore.
This commit is contained in:
467
docs/extras/modules/data_connection/caching_embeddings.ipynb
Normal file
467
docs/extras/modules/data_connection/caching_embeddings.ipynb
Normal file
@@ -0,0 +1,467 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "bf4061ce",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Caching Embeddings\n",
|
||||||
|
"\n",
|
||||||
|
"Embeddings can be stored or temporarily cached to avoid needing to recompute them.\n",
|
||||||
|
"\n",
|
||||||
|
"Caching embeddings can be done using a `CacheBackedEmbedder`.\n",
|
||||||
|
"\n",
|
||||||
|
"The cache backed embedder is a wrapper around an embedder that caches\n",
|
||||||
|
"embeddings in a key-value store. \n",
|
||||||
|
"\n",
|
||||||
|
"The text is hashed and the hash is used as the key in the cache.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"The main supported way to initialized a `CacheBackedEmbedder` is `from_bytes_store`. This takes in the following parameters:\n",
|
||||||
|
"\n",
|
||||||
|
"- underlying_embedder: The embedder to use for embedding.\n",
|
||||||
|
"- document_embedding_cache: The cache to use for storing document embeddings.\n",
|
||||||
|
"- namespace: (optional, defaults to `\"\"`) The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used.\n",
|
||||||
|
"\n",
|
||||||
|
"**Attention**: Be sure to set the `namespace` parameter to avoid collisions of the same text embedded using different embeddings models."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "a463c3c2-749b-40d1-a433-84f68a1cd1c7",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import CacheBackedEmbedder\n",
|
||||||
|
"from langchain.storage import InMemoryStore\n",
|
||||||
|
"from langchain.storage import LocalFileStore\n",
|
||||||
|
"from langchain.embeddings import OpenAIEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "564c9801-29f0-4452-aeac-527382e2c0e8",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## In Memory\n",
|
||||||
|
"\n",
|
||||||
|
"This section shows how to set up an in memory cache for embeddings. This type of cache is primarily \n",
|
||||||
|
"useful for unit tests or prototyping. Do **not** use this cache if you need to actually store the embeddings."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "13bd1c5b-b7ba-4394-957c-7d5b5a841972",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"store = InMemoryStore()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "9d99885f-99e1-498c-904d-6db539ac9466",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"underlying_embedder = OpenAIEmbeddings()\n",
|
||||||
|
"embedder = CacheBackedEmbedder.from_bytes_store(\n",
|
||||||
|
" underlying_embedder, store, namespace=underlying_embedder.model\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "682eb5d4-0b7a-4dac-b8fb-3de4ca6e421c",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 405 ms, sys: 32.9 ms, total: 438 ms\n",
|
||||||
|
"Wall time: 715 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"embeddings = embedder.embed_documents([\"hello\", \"goodbye\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "95233026-147f-49d1-bd87-e1e8b88ebdbc",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The second time we try to embed the embedding time is only 2 ms because the embeddings are looked up in the cache."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"id": "f819c3ff-a212-4d06-a5f7-5eb1435c1feb",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 1.55 ms, sys: 436 µs, total: 1.99 ms\n",
|
||||||
|
"Wall time: 1.99 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"embeddings_from_cache = embedder.embed_documents([\"hello\", \"goodbye\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "ec38fb72-90a9-4687-a483-c62c87d1f4dd",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"True"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"embeddings == embeddings_from_cache"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f6cbe100-8587-4830-b207-fb8b524a9854",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## File system\n",
|
||||||
|
"\n",
|
||||||
|
"This section covers how to use a file system store"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "a0070271-0809-4528-97e0-2a88216846f3",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fs = LocalFileStore(\"./cache/\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "0b20e9fe-f57f-4d7c-9f81-105c5f8726f4",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"embedder2 = CacheBackedEmbedder.from_bytes_store(\n",
|
||||||
|
" underlying_embedder, fs, namespace=underlying_embedder.model\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "630515fd-bf5c-4d9c-a404-9705308f3a2c",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 10.5 ms, sys: 988 µs, total: 11.5 ms\n",
|
||||||
|
"Wall time: 220 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"embeddings = embedder2.embed_documents([\"hello\", \"goodbye\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"id": "30e6bb87-42c9-4d08-88ac-0d22c9c449a1",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 3.49 ms, sys: 0 ns, total: 3.49 ms\n",
|
||||||
|
"Wall time: 3.03 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"embeddings = embedder2.embed_documents([\"hello\", \"goodbye\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "12ed5a45-8352-4e0f-8583-5537397f53c0",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Here are the embeddings that have been persisted to the directory `./cache`. \n",
|
||||||
|
"\n",
|
||||||
|
"Notice that the embedder takes a namespace parameter."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "658e2914-05e9-44a3-a8fe-3fe17ca84039",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n",
|
||||||
|
" 'text-embedding-ada-0026ba52e44-59c9-5cc9-a084-284061b13c80']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"list(fs.yield_keys())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "c67f8e97-4851-4e26-ab6f-3418b0188dc4",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Using with a vectorstore\n",
|
||||||
|
"\n",
|
||||||
|
"Let's see this cache in action with the FAISS vectorstore."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"id": "9e4314d8-88ef-4f52-81ae-0be771168bb6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.document_loaders import TextLoader\n",
|
||||||
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||||
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||||
|
"from langchain.vectorstores import FAISS"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"id": "30743664-38f5-425d-8216-772b64e7f348",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fs = LocalFileStore(\"./cache/\")\n",
|
||||||
|
"\n",
|
||||||
|
"cached_embedder = CacheBackedEmbedder.from_bytes_store(\n",
|
||||||
|
" OpenAIEmbeddings(), fs, namespace=underlying_embedder.model\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "06a6f305-724f-4b71-adef-be0169f61381",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The cache is empty prior to embedding"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "f9ad627f-ced2-4277-b336-2434f22f2c8a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n",
|
||||||
|
" 'text-embedding-ada-0026ba52e44-59c9-5cc9-a084-284061b13c80']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 14,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"list(fs.yield_keys())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5814aa9c-e8e4-4079-accf-53c49615971e",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Load the document, split it into chunks, embed each chunk and load it into the vector store."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"id": "cf958ac2-e60e-4668-b32c-8bb2d78b3c61",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"raw_documents = TextLoader(\"../state_of_the_union.txt\").load()\n",
|
||||||
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||||
|
"documents = text_splitter.split_documents(raw_documents)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "fc433fec-ab64-4f11-ae8b-fc3dd76cd79a",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"create the vectorstore"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"id": "3a1d7bb8-3b72-4bb5-9013-cf7729caca61",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 124 ms, sys: 22.6 ms, total: 146 ms\n",
|
||||||
|
"Wall time: 832 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"db = FAISS.from_documents(documents, cached_embedder)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "c94a734c-fa66-40ce-8610-12b00b7df334",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"If we try to create the vectostore again, it'll be much faster since it does not need to re-compute any embeddings."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"id": "714cb2e2-77ba-41a8-bb83-84e75342af2d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"CPU times: user 32.9 ms, sys: 286 µs, total: 33.2 ms\n",
|
||||||
|
"Wall time: 32.5 ms\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"db2 = FAISS.from_documents(documents, cached_embedder)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "93d37b2a-5406-4e2c-b786-869e2430d19d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"And here are some of the embeddings that got created:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"id": "f2ca32dd-3712-4093-942b-4122f3dc8a8e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['text-embedding-ada-002614d7cf6-46f1-52fa-9d3a-740c39e7a20e',\n",
|
||||||
|
" 'text-embedding-ada-0020fc1ede2-407a-5e14-8f8f-5642214263f5',\n",
|
||||||
|
" 'text-embedding-ada-002e885db5b-c0bd-5fbc-88b1-4d1da6020aa5',\n",
|
||||||
|
" 'text-embedding-ada-002e4ad20ef-dfaa-5916-9459-f90c6d8e8159',\n",
|
||||||
|
" 'text-embedding-ada-002a5ef11e4-0474-5725-8d80-81c91943b37f']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 19,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"list(fs.yield_keys())[:5]"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@@ -20,6 +20,7 @@ from langchain.embeddings.aleph_alpha import (
|
|||||||
)
|
)
|
||||||
from langchain.embeddings.awa import AwaEmbeddings
|
from langchain.embeddings.awa import AwaEmbeddings
|
||||||
from langchain.embeddings.bedrock import BedrockEmbeddings
|
from langchain.embeddings.bedrock import BedrockEmbeddings
|
||||||
|
from langchain.embeddings.cache import CacheBackedEmbeddings
|
||||||
from langchain.embeddings.clarifai import ClarifaiEmbeddings
|
from langchain.embeddings.clarifai import ClarifaiEmbeddings
|
||||||
from langchain.embeddings.cohere import CohereEmbeddings
|
from langchain.embeddings.cohere import CohereEmbeddings
|
||||||
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
||||||
@@ -62,10 +63,11 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"OpenAIEmbeddings",
|
"OpenAIEmbeddings",
|
||||||
"HuggingFaceEmbeddings",
|
"CacheBackedEmbeddings",
|
||||||
"CohereEmbeddings",
|
|
||||||
"ClarifaiEmbeddings",
|
"ClarifaiEmbeddings",
|
||||||
|
"CohereEmbeddings",
|
||||||
"ElasticsearchEmbeddings",
|
"ElasticsearchEmbeddings",
|
||||||
|
"HuggingFaceEmbeddings",
|
||||||
"JinaEmbeddings",
|
"JinaEmbeddings",
|
||||||
"LlamaCppEmbeddings",
|
"LlamaCppEmbeddings",
|
||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
|
175
libs/langchain/langchain/embeddings/cache.py
Normal file
175
libs/langchain/langchain/embeddings/cache.py
Normal file
@@ -0,0 +1,175 @@
|
|||||||
|
"""Module contains code for a cache backed embedder.
|
||||||
|
|
||||||
|
The cache backed embedder is a wrapper around an embedder that caches
|
||||||
|
embeddings in a key-value store. The cache is used to avoid recomputing
|
||||||
|
embeddings for the same text.
|
||||||
|
|
||||||
|
The text is hashed and the hash is used as the key in the cache.
|
||||||
|
"""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import hashlib
|
||||||
|
import json
|
||||||
|
import uuid
|
||||||
|
from functools import partial
|
||||||
|
from typing import Callable, List, Sequence, Union, cast
|
||||||
|
|
||||||
|
from langchain.embeddings.base import Embeddings
|
||||||
|
from langchain.schema import BaseStore
|
||||||
|
from langchain.storage.encoder_backed import EncoderBackedStore
|
||||||
|
|
||||||
|
NAMESPACE_UUID = uuid.UUID(int=1985)
|
||||||
|
|
||||||
|
|
||||||
|
def _hash_string_to_uuid(input_string: str) -> uuid.UUID:
|
||||||
|
"""Hash a string and returns the corresponding UUID."""
|
||||||
|
hash_value = hashlib.sha1(input_string.encode("utf-8")).hexdigest()
|
||||||
|
return uuid.uuid5(NAMESPACE_UUID, hash_value)
|
||||||
|
|
||||||
|
|
||||||
|
def _key_encoder(key: str, namespace: str) -> str:
|
||||||
|
"""Encode a key."""
|
||||||
|
return namespace + str(_hash_string_to_uuid(key))
|
||||||
|
|
||||||
|
|
||||||
|
def _create_key_encoder(namespace: str) -> Callable[[str], str]:
|
||||||
|
"""Create an encoder for a key."""
|
||||||
|
return partial(_key_encoder, namespace=namespace)
|
||||||
|
|
||||||
|
|
||||||
|
def _value_serializer(value: Sequence[float]) -> bytes:
|
||||||
|
"""Serialize a value."""
|
||||||
|
return json.dumps(value).encode()
|
||||||
|
|
||||||
|
|
||||||
|
def _value_deserializer(serialized_value: bytes) -> List[float]:
|
||||||
|
"""Deserialize a value."""
|
||||||
|
return cast(List[float], json.loads(serialized_value.decode()))
|
||||||
|
|
||||||
|
|
||||||
|
class CacheBackedEmbeddings(Embeddings):
|
||||||
|
"""Interface for caching results from embedding models.
|
||||||
|
|
||||||
|
The interface allows works with any store that implements
|
||||||
|
the abstract store interface accepting keys of type str and values of list of
|
||||||
|
floats.
|
||||||
|
|
||||||
|
If need be, the interface can be extended to accept other implementations
|
||||||
|
of the value serializer and deserializer, as well as the key encoder.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
|
||||||
|
..code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import CacheBackedEmbeddings, OpenAIEmbeddings
|
||||||
|
from langchain.storage import LocalFileStore
|
||||||
|
|
||||||
|
store = LocalFileStore('./my_cache')
|
||||||
|
|
||||||
|
underlying_embedder = OpenAIEmbeddings()
|
||||||
|
embedder = CacheBackedEmbeddings.from_bytes_store(
|
||||||
|
underlying_embedder, store, namespace=underlying_embedder.model
|
||||||
|
)
|
||||||
|
|
||||||
|
# Embedding is computed and cached
|
||||||
|
embeddings = embedder.embed_documents(["hello", "goodbye"])
|
||||||
|
|
||||||
|
# Embeddings are retrieved from the cache, no computation is done
|
||||||
|
embeddings = embedder.embed_documents(["hello", "goodbye"])
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
underlying_embeddings: Embeddings,
|
||||||
|
document_embedding_store: BaseStore[str, List[float]],
|
||||||
|
) -> None:
|
||||||
|
"""Initialize the embedder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
underlying_embeddings: the embedder to use for computing embeddings.
|
||||||
|
document_embedding_store: The store to use for caching document embeddings.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.document_embedding_store = document_embedding_store
|
||||||
|
self.underlying_embeddings = underlying_embeddings
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Embed a list of texts.
|
||||||
|
|
||||||
|
The method first checks the cache for the embeddings.
|
||||||
|
If the embeddings are not found, the method uses the underlying embedder
|
||||||
|
to embed the documents and stores the results in the cache.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: A list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of embeddings for the given texts.
|
||||||
|
"""
|
||||||
|
vectors: List[Union[List[float], None]] = self.document_embedding_store.mget(
|
||||||
|
texts
|
||||||
|
)
|
||||||
|
missing_indices: List[int] = [
|
||||||
|
i for i, vector in enumerate(vectors) if vector is None
|
||||||
|
]
|
||||||
|
missing_texts = [texts[i] for i in missing_indices]
|
||||||
|
|
||||||
|
if missing_texts:
|
||||||
|
missing_vectors = self.underlying_embeddings.embed_documents(missing_texts)
|
||||||
|
self.document_embedding_store.mset(
|
||||||
|
list(zip(missing_texts, missing_vectors))
|
||||||
|
)
|
||||||
|
for index, updated_vector in zip(missing_indices, missing_vectors):
|
||||||
|
vectors[index] = updated_vector
|
||||||
|
|
||||||
|
return cast(
|
||||||
|
List[List[float]], vectors
|
||||||
|
) # Nones should have been resolved by now
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Embed query text.
|
||||||
|
|
||||||
|
This method does not support caching at the moment.
|
||||||
|
|
||||||
|
Support for caching queries is easily to implement, but might make
|
||||||
|
sense to hold off to see the most common patterns.
|
||||||
|
|
||||||
|
If the cache has an eviction policy, we may need to be a bit more careful
|
||||||
|
about sharing the cache between documents and queries. Generally,
|
||||||
|
one is OK evicting query caches, but document caches should be kept.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The embedding for the given text.
|
||||||
|
"""
|
||||||
|
return self.underlying_embeddings.embed_query(text)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_bytes_store(
|
||||||
|
cls,
|
||||||
|
underlying_embeddings: Embeddings,
|
||||||
|
document_embedding_cache: BaseStore[str, bytes],
|
||||||
|
*,
|
||||||
|
namespace: str = "",
|
||||||
|
) -> CacheBackedEmbeddings:
|
||||||
|
"""On-ramp that adds the necessary serialization and encoding to the store.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
underlying_embeddings: The embedder to use for embedding.
|
||||||
|
document_embedding_cache: The cache to use for storing document embeddings.
|
||||||
|
*,
|
||||||
|
namespace: The namespace to use for document cache.
|
||||||
|
This namespace is used to avoid collisions with other caches.
|
||||||
|
For example, set it to the name of the embedding model used.
|
||||||
|
"""
|
||||||
|
namespace = namespace
|
||||||
|
key_encoder = _create_key_encoder(namespace)
|
||||||
|
encoder_backed_store = EncoderBackedStore[str, List[float]](
|
||||||
|
document_embedding_cache,
|
||||||
|
key_encoder,
|
||||||
|
_value_serializer,
|
||||||
|
_value_deserializer,
|
||||||
|
)
|
||||||
|
return cls(underlying_embeddings, encoder_backed_store)
|
49
libs/langchain/tests/unit_tests/embeddings/test_caching.py
Normal file
49
libs/langchain/tests/unit_tests/embeddings/test_caching.py
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
"""Embeddings tests."""
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from langchain.embeddings import CacheBackedEmbeddings
|
||||||
|
from langchain.embeddings.base import Embeddings
|
||||||
|
from langchain.storage.in_memory import InMemoryStore
|
||||||
|
|
||||||
|
|
||||||
|
class MockEmbeddings(Embeddings):
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
# Simulate embedding documents
|
||||||
|
embeddings: List[List[float]] = []
|
||||||
|
for text in texts:
|
||||||
|
embeddings.append([len(text), len(text) + 1])
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
# Simulate embedding a query
|
||||||
|
return [5.0, 6.0]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def cache_embeddings() -> CacheBackedEmbeddings:
|
||||||
|
"""Create a cache backed embeddings."""
|
||||||
|
store = InMemoryStore()
|
||||||
|
embeddings = MockEmbeddings()
|
||||||
|
return CacheBackedEmbeddings.from_bytes_store(
|
||||||
|
embeddings, store, namespace="test_namespace"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_embed_documents(cache_embeddings: CacheBackedEmbeddings) -> None:
|
||||||
|
texts = ["1", "22", "a", "333"]
|
||||||
|
vectors = cache_embeddings.embed_documents(texts)
|
||||||
|
expected_vectors: List[List[float]] = [[1, 2.0], [2.0, 3.0], [1.0, 2.0], [3.0, 4.0]]
|
||||||
|
assert vectors == expected_vectors
|
||||||
|
keys = list(cache_embeddings.document_embedding_store.yield_keys())
|
||||||
|
assert len(keys) == 4
|
||||||
|
# UUID is expected to be the same for the same text
|
||||||
|
assert keys[0] == "test_namespace812b86c1-8ebf-5483-95c6-c95cf2b52d12"
|
||||||
|
|
||||||
|
|
||||||
|
def test_embed_query(cache_embeddings: CacheBackedEmbeddings) -> None:
|
||||||
|
text = "query_text"
|
||||||
|
vector = cache_embeddings.embed_query(text)
|
||||||
|
expected_vector = [5.0, 6.0]
|
||||||
|
assert vector == expected_vector
|
Reference in New Issue
Block a user