mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
Added embeddings support for ollama (#10124)
- Description: Added support for Ollama embeddings - Issue: the issue # it fixes (if applicable), - Dependencies: N/A - Tag maintainer: for a quicker response, tag the relevant maintainer (see below), - Twitter handle: @herrjemand cc https://github.com/jmorganca/ollama/issues/436
This commit is contained in:
@@ -106,6 +106,25 @@
|
||||
"llm(\"Tell me about the history of AI\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Ollama supports embeddings via `OllamaEmbeddings`:\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import OllamaEmbeddings\n",
|
||||
"oembed = OllamaEmbeddings(base_url=\"http://localhost:11434\", model=\"llama2\")\n",
|
||||
"\n",
|
||||
"oembed.embed_query(\"Llamas are social animals and live with others as a herd.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -121,7 +140,7 @@
|
||||
"ollama run llama2:13b \n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Let's also use local embeddings from `GPT4AllEmbeddings` and `Chroma`."
|
||||
"Let's also use local embeddings from `OllamaEmbeddings` and `Chroma`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -163,9 +182,9 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain.embeddings import OllamaEmbeddings\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())"
|
||||
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=OllamaEmbeddings())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -353,7 +372,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.16"
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
228
docs/extras/integrations/text_embedding/ollama.ipynb
Normal file
228
docs/extras/integrations/text_embedding/ollama.ipynb
Normal file
@@ -0,0 +1,228 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "278b6c63",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Ollama\n",
|
||||
"\n",
|
||||
"Let's load the Ollama Embeddings class."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "0be1af71",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import OllamaEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "2c66e5da",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = OllamaEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "01370375",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"This is a test document.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a42e4035",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To generate embeddings, you can either query an invidivual text, or you can query a list of texts."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[-0.09996652603149414,\n",
|
||||
" 0.015568195842206478,\n",
|
||||
" 0.17670190334320068,\n",
|
||||
" 0.16521021723747253,\n",
|
||||
" 0.21193109452724457]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_result = embeddings.embed_query(text)\n",
|
||||
"query_result[:5]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[-0.04242777079343796,\n",
|
||||
" 0.016536075621843338,\n",
|
||||
" 0.10052520781755447,\n",
|
||||
" 0.18272875249385834,\n",
|
||||
" 0.2079043835401535]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"doc_result = embeddings.embed_documents([text])\n",
|
||||
"doc_result[0][:5]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bb61bbeb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's load the Ollama Embeddings class with smaller model (e.g. llama:7b). Note: See other supported models [https://ollama.ai/library](https://ollama.ai/library)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "a56b70f5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = OllamaEmbeddings(model=\"llama2:7b\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "14aefb64",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"This is a test document.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "3c39ed33",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result = embeddings.embed_query(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "2ee7ce9f-d506-4810-8897-e44334412714",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[-0.09996627271175385,\n",
|
||||
" 0.015567859634757042,\n",
|
||||
" 0.17670205235481262,\n",
|
||||
" 0.16521376371383667,\n",
|
||||
" 0.21193283796310425]"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_result[:5]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "e3221db6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc_result = embeddings.embed_documents([text])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "a0865409-3a6d-468f-939f-abde17c7cac3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[-0.042427532374858856,\n",
|
||||
" 0.01653730869293213,\n",
|
||||
" 0.10052604228258133,\n",
|
||||
" 0.18272635340690613,\n",
|
||||
" 0.20790338516235352]"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"doc_result[0][:5]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Reference in New Issue
Block a user