mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-15 14:36:54 +00:00
Added embeddings support for ollama (#10124)
- Description: Added support for Ollama embeddings - Issue: the issue # it fixes (if applicable), - Dependencies: N/A - Tag maintainer: for a quicker response, tag the relevant maintainer (see below), - Twitter handle: @herrjemand cc https://github.com/jmorganca/ollama/issues/436
This commit is contained in:
@@ -49,6 +49,7 @@ from langchain.embeddings.modelscope_hub import ModelScopeEmbeddings
|
||||
from langchain.embeddings.mosaicml import MosaicMLInstructorEmbeddings
|
||||
from langchain.embeddings.nlpcloud import NLPCloudEmbeddings
|
||||
from langchain.embeddings.octoai_embeddings import OctoAIEmbeddings
|
||||
from langchain.embeddings.ollama import OllamaEmbeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.embeddings.sagemaker_endpoint import SagemakerEndpointEmbeddings
|
||||
from langchain.embeddings.self_hosted import SelfHostedEmbeddings
|
||||
@@ -106,6 +107,7 @@ __all__ = [
|
||||
"AwaEmbeddings",
|
||||
"HuggingFaceBgeEmbeddings",
|
||||
"ErnieEmbeddings",
|
||||
"OllamaEmbeddings",
|
||||
"QianfanEmbeddingsEndpoint",
|
||||
]
|
||||
|
||||
|
205
libs/langchain/langchain/embeddings/ollama.py
Normal file
205
libs/langchain/langchain/embeddings/ollama.py
Normal file
@@ -0,0 +1,205 @@
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.pydantic_v1 import BaseModel, Extra
|
||||
|
||||
|
||||
class OllamaEmbeddings(BaseModel, Embeddings):
|
||||
"""Ollama locally runs large language models.
|
||||
|
||||
To use, follow the instructions at https://ollama.ai/.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.embeddings import OllamaEmbeddings
|
||||
ollama_emb = OllamaEmbeddings(
|
||||
model="llama:7b",
|
||||
)
|
||||
r1 = ollama_emb.embed_documents(
|
||||
[
|
||||
"Alpha is the first letter of Greek alphabet",
|
||||
"Beta is the second letter of Greek alphabet",
|
||||
]
|
||||
)
|
||||
r2 = ollama_emb.embed_query(
|
||||
"What is the second letter of Greek alphabet"
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
base_url: str = "http://localhost:11434"
|
||||
"""Base url the model is hosted under."""
|
||||
model: str = "llama2"
|
||||
"""Model name to use."""
|
||||
|
||||
embed_instruction: str = "passage: "
|
||||
"""Instruction used to embed documents."""
|
||||
query_instruction: str = "query: "
|
||||
"""Instruction used to embed the query."""
|
||||
|
||||
mirostat: Optional[int]
|
||||
"""Enable Mirostat sampling for controlling perplexity.
|
||||
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
|
||||
|
||||
mirostat_eta: Optional[float]
|
||||
"""Influences how quickly the algorithm responds to feedback
|
||||
from the generated text. A lower learning rate will result in
|
||||
slower adjustments, while a higher learning rate will make
|
||||
the algorithm more responsive. (Default: 0.1)"""
|
||||
|
||||
mirostat_tau: Optional[float]
|
||||
"""Controls the balance between coherence and diversity
|
||||
of the output. A lower value will result in more focused and
|
||||
coherent text. (Default: 5.0)"""
|
||||
|
||||
num_ctx: Optional[int]
|
||||
"""Sets the size of the context window used to generate the
|
||||
next token. (Default: 2048) """
|
||||
|
||||
num_gpu: Optional[int]
|
||||
"""The number of GPUs to use. On macOS it defaults to 1 to
|
||||
enable metal support, 0 to disable."""
|
||||
|
||||
num_thread: Optional[int]
|
||||
"""Sets the number of threads to use during computation.
|
||||
By default, Ollama will detect this for optimal performance.
|
||||
It is recommended to set this value to the number of physical
|
||||
CPU cores your system has (as opposed to the logical number of cores)."""
|
||||
|
||||
repeat_last_n: Optional[int]
|
||||
"""Sets how far back for the model to look back to prevent
|
||||
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
|
||||
|
||||
repeat_penalty: Optional[float]
|
||||
"""Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
|
||||
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
|
||||
will be more lenient. (Default: 1.1)"""
|
||||
|
||||
temperature: Optional[float]
|
||||
"""The temperature of the model. Increasing the temperature will
|
||||
make the model answer more creatively. (Default: 0.8)"""
|
||||
|
||||
stop: Optional[List[str]]
|
||||
"""Sets the stop tokens to use."""
|
||||
|
||||
tfs_z: Optional[float]
|
||||
"""Tail free sampling is used to reduce the impact of less probable
|
||||
tokens from the output. A higher value (e.g., 2.0) will reduce the
|
||||
impact more, while a value of 1.0 disables this setting. (default: 1)"""
|
||||
|
||||
top_k: Optional[int]
|
||||
"""Reduces the probability of generating nonsense. A higher value (e.g. 100)
|
||||
will give more diverse answers, while a lower value (e.g. 10)
|
||||
will be more conservative. (Default: 40)"""
|
||||
|
||||
top_p: Optional[int]
|
||||
"""Works together with top-k. A higher value (e.g., 0.95) will lead
|
||||
to more diverse text, while a lower value (e.g., 0.5) will
|
||||
generate more focused and conservative text. (Default: 0.9)"""
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling Ollama."""
|
||||
return {
|
||||
"model": self.model,
|
||||
"options": {
|
||||
"mirostat": self.mirostat,
|
||||
"mirostat_eta": self.mirostat_eta,
|
||||
"mirostat_tau": self.mirostat_tau,
|
||||
"num_ctx": self.num_ctx,
|
||||
"num_gpu": self.num_gpu,
|
||||
"num_thread": self.num_thread,
|
||||
"repeat_last_n": self.repeat_last_n,
|
||||
"repeat_penalty": self.repeat_penalty,
|
||||
"temperature": self.temperature,
|
||||
"stop": self.stop,
|
||||
"tfs_z": self.tfs_z,
|
||||
"top_k": self.top_k,
|
||||
"top_p": self.top_p,
|
||||
},
|
||||
}
|
||||
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Other model keyword args"""
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def _process_emb_response(self, input: str) -> List[float]:
|
||||
"""Process a response from the API.
|
||||
|
||||
Args:
|
||||
response: The response from the API.
|
||||
|
||||
Returns:
|
||||
The response as a dictionary.
|
||||
"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
try:
|
||||
res = requests.post(
|
||||
f"{self.base_url}/api/embeddings",
|
||||
headers=headers,
|
||||
json={"model": self.model, "prompt": input, **self._default_params},
|
||||
)
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
|
||||
if res.status_code != 200:
|
||||
raise ValueError(
|
||||
"Error raised by inference API HTTP code: %s, %s"
|
||||
% (res.status_code, res.text)
|
||||
)
|
||||
try:
|
||||
t = res.json()
|
||||
return t["embedding"]
|
||||
except requests.exceptions.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Error raised by inference API: {e}.\nResponse: {res.text}"
|
||||
)
|
||||
|
||||
def _embed(self, input: List[str]) -> List[List[float]]:
|
||||
embeddings_list: List[List[float]] = []
|
||||
for prompt in input:
|
||||
embeddings = self._process_emb_response(prompt)
|
||||
embeddings_list.append(embeddings)
|
||||
|
||||
return embeddings_list
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed documents using a Ollama deployed embedding model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]
|
||||
embeddings = self._embed(instruction_pairs)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using a Ollama deployed embedding model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
instruction_pair = f"{self.query_instruction}{text}"
|
||||
embedding = self._embed([instruction_pair])[0]
|
||||
return embedding
|
Reference in New Issue
Block a user