mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 21:12:48 +00:00
text-splitters[minor], langchain[minor], community[patch], templates, docs: langchain-text-splitters 0.0.1 (#18346)
This commit is contained in:
324
libs/text-splitters/langchain_text_splitters/base.py
Normal file
324
libs/text-splitters/langchain_text_splitters/base.py
Normal file
@@ -0,0 +1,324 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Any,
|
||||
Callable,
|
||||
Collection,
|
||||
Iterable,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.documents import BaseDocumentTransformer, Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
TS = TypeVar("TS", bound="TextSplitter")
|
||||
|
||||
|
||||
class TextSplitter(BaseDocumentTransformer, ABC):
|
||||
"""Interface for splitting text into chunks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int = 4000,
|
||||
chunk_overlap: int = 200,
|
||||
length_function: Callable[[str], int] = len,
|
||||
keep_separator: bool = False,
|
||||
add_start_index: bool = False,
|
||||
strip_whitespace: bool = True,
|
||||
) -> None:
|
||||
"""Create a new TextSplitter.
|
||||
|
||||
Args:
|
||||
chunk_size: Maximum size of chunks to return
|
||||
chunk_overlap: Overlap in characters between chunks
|
||||
length_function: Function that measures the length of given chunks
|
||||
keep_separator: Whether to keep the separator in the chunks
|
||||
add_start_index: If `True`, includes chunk's start index in metadata
|
||||
strip_whitespace: If `True`, strips whitespace from the start and end of
|
||||
every document
|
||||
"""
|
||||
if chunk_overlap > chunk_size:
|
||||
raise ValueError(
|
||||
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
|
||||
f"({chunk_size}), should be smaller."
|
||||
)
|
||||
self._chunk_size = chunk_size
|
||||
self._chunk_overlap = chunk_overlap
|
||||
self._length_function = length_function
|
||||
self._keep_separator = keep_separator
|
||||
self._add_start_index = add_start_index
|
||||
self._strip_whitespace = strip_whitespace
|
||||
|
||||
@abstractmethod
|
||||
def split_text(self, text: str) -> List[str]:
|
||||
"""Split text into multiple components."""
|
||||
|
||||
def create_documents(
|
||||
self, texts: List[str], metadatas: Optional[List[dict]] = None
|
||||
) -> List[Document]:
|
||||
"""Create documents from a list of texts."""
|
||||
_metadatas = metadatas or [{}] * len(texts)
|
||||
documents = []
|
||||
for i, text in enumerate(texts):
|
||||
index = 0
|
||||
previous_chunk_len = 0
|
||||
for chunk in self.split_text(text):
|
||||
metadata = copy.deepcopy(_metadatas[i])
|
||||
if self._add_start_index:
|
||||
offset = index + previous_chunk_len - self._chunk_overlap
|
||||
index = text.find(chunk, max(0, offset))
|
||||
metadata["start_index"] = index
|
||||
previous_chunk_len = len(chunk)
|
||||
new_doc = Document(page_content=chunk, metadata=metadata)
|
||||
documents.append(new_doc)
|
||||
return documents
|
||||
|
||||
def split_documents(self, documents: Iterable[Document]) -> List[Document]:
|
||||
"""Split documents."""
|
||||
texts, metadatas = [], []
|
||||
for doc in documents:
|
||||
texts.append(doc.page_content)
|
||||
metadatas.append(doc.metadata)
|
||||
return self.create_documents(texts, metadatas=metadatas)
|
||||
|
||||
def _join_docs(self, docs: List[str], separator: str) -> Optional[str]:
|
||||
text = separator.join(docs)
|
||||
if self._strip_whitespace:
|
||||
text = text.strip()
|
||||
if text == "":
|
||||
return None
|
||||
else:
|
||||
return text
|
||||
|
||||
def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]:
|
||||
# We now want to combine these smaller pieces into medium size
|
||||
# chunks to send to the LLM.
|
||||
separator_len = self._length_function(separator)
|
||||
|
||||
docs = []
|
||||
current_doc: List[str] = []
|
||||
total = 0
|
||||
for d in splits:
|
||||
_len = self._length_function(d)
|
||||
if (
|
||||
total + _len + (separator_len if len(current_doc) > 0 else 0)
|
||||
> self._chunk_size
|
||||
):
|
||||
if total > self._chunk_size:
|
||||
logger.warning(
|
||||
f"Created a chunk of size {total}, "
|
||||
f"which is longer than the specified {self._chunk_size}"
|
||||
)
|
||||
if len(current_doc) > 0:
|
||||
doc = self._join_docs(current_doc, separator)
|
||||
if doc is not None:
|
||||
docs.append(doc)
|
||||
# Keep on popping if:
|
||||
# - we have a larger chunk than in the chunk overlap
|
||||
# - or if we still have any chunks and the length is long
|
||||
while total > self._chunk_overlap or (
|
||||
total + _len + (separator_len if len(current_doc) > 0 else 0)
|
||||
> self._chunk_size
|
||||
and total > 0
|
||||
):
|
||||
total -= self._length_function(current_doc[0]) + (
|
||||
separator_len if len(current_doc) > 1 else 0
|
||||
)
|
||||
current_doc = current_doc[1:]
|
||||
current_doc.append(d)
|
||||
total += _len + (separator_len if len(current_doc) > 1 else 0)
|
||||
doc = self._join_docs(current_doc, separator)
|
||||
if doc is not None:
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@classmethod
|
||||
def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
|
||||
"""Text splitter that uses HuggingFace tokenizer to count length."""
|
||||
try:
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerBase):
|
||||
raise ValueError(
|
||||
"Tokenizer received was not an instance of PreTrainedTokenizerBase"
|
||||
)
|
||||
|
||||
def _huggingface_tokenizer_length(text: str) -> int:
|
||||
return len(tokenizer.encode(text))
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import transformers python package. "
|
||||
"Please install it with `pip install transformers`."
|
||||
)
|
||||
return cls(length_function=_huggingface_tokenizer_length, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def from_tiktoken_encoder(
|
||||
cls: Type[TS],
|
||||
encoding_name: str = "gpt2",
|
||||
model_name: Optional[str] = None,
|
||||
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
|
||||
**kwargs: Any,
|
||||
) -> TS:
|
||||
"""Text splitter that uses tiktoken encoder to count length."""
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate max_tokens_for_prompt. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
if model_name is not None:
|
||||
enc = tiktoken.encoding_for_model(model_name)
|
||||
else:
|
||||
enc = tiktoken.get_encoding(encoding_name)
|
||||
|
||||
def _tiktoken_encoder(text: str) -> int:
|
||||
return len(
|
||||
enc.encode(
|
||||
text,
|
||||
allowed_special=allowed_special,
|
||||
disallowed_special=disallowed_special,
|
||||
)
|
||||
)
|
||||
|
||||
if issubclass(cls, TokenTextSplitter):
|
||||
extra_kwargs = {
|
||||
"encoding_name": encoding_name,
|
||||
"model_name": model_name,
|
||||
"allowed_special": allowed_special,
|
||||
"disallowed_special": disallowed_special,
|
||||
}
|
||||
kwargs = {**kwargs, **extra_kwargs}
|
||||
|
||||
return cls(length_function=_tiktoken_encoder, **kwargs)
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
"""Transform sequence of documents by splitting them."""
|
||||
return self.split_documents(list(documents))
|
||||
|
||||
|
||||
class TokenTextSplitter(TextSplitter):
|
||||
"""Splitting text to tokens using model tokenizer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoding_name: str = "gpt2",
|
||||
model_name: Optional[str] = None,
|
||||
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Create a new TextSplitter."""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to for TokenTextSplitter. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
if model_name is not None:
|
||||
enc = tiktoken.encoding_for_model(model_name)
|
||||
else:
|
||||
enc = tiktoken.get_encoding(encoding_name)
|
||||
self._tokenizer = enc
|
||||
self._allowed_special = allowed_special
|
||||
self._disallowed_special = disallowed_special
|
||||
|
||||
def split_text(self, text: str) -> List[str]:
|
||||
def _encode(_text: str) -> List[int]:
|
||||
return self._tokenizer.encode(
|
||||
_text,
|
||||
allowed_special=self._allowed_special,
|
||||
disallowed_special=self._disallowed_special,
|
||||
)
|
||||
|
||||
tokenizer = Tokenizer(
|
||||
chunk_overlap=self._chunk_overlap,
|
||||
tokens_per_chunk=self._chunk_size,
|
||||
decode=self._tokenizer.decode,
|
||||
encode=_encode,
|
||||
)
|
||||
|
||||
return split_text_on_tokens(text=text, tokenizer=tokenizer)
|
||||
|
||||
|
||||
class Language(str, Enum):
|
||||
"""Enum of the programming languages."""
|
||||
|
||||
CPP = "cpp"
|
||||
GO = "go"
|
||||
JAVA = "java"
|
||||
KOTLIN = "kotlin"
|
||||
JS = "js"
|
||||
TS = "ts"
|
||||
PHP = "php"
|
||||
PROTO = "proto"
|
||||
PYTHON = "python"
|
||||
RST = "rst"
|
||||
RUBY = "ruby"
|
||||
RUST = "rust"
|
||||
SCALA = "scala"
|
||||
SWIFT = "swift"
|
||||
MARKDOWN = "markdown"
|
||||
LATEX = "latex"
|
||||
HTML = "html"
|
||||
SOL = "sol"
|
||||
CSHARP = "csharp"
|
||||
COBOL = "cobol"
|
||||
C = "c"
|
||||
LUA = "lua"
|
||||
PERL = "perl"
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Tokenizer:
|
||||
"""Tokenizer data class."""
|
||||
|
||||
chunk_overlap: int
|
||||
"""Overlap in tokens between chunks"""
|
||||
tokens_per_chunk: int
|
||||
"""Maximum number of tokens per chunk"""
|
||||
decode: Callable[[List[int]], str]
|
||||
""" Function to decode a list of token ids to a string"""
|
||||
encode: Callable[[str], List[int]]
|
||||
""" Function to encode a string to a list of token ids"""
|
||||
|
||||
|
||||
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]:
|
||||
"""Split incoming text and return chunks using tokenizer."""
|
||||
splits: List[str] = []
|
||||
input_ids = tokenizer.encode(text)
|
||||
start_idx = 0
|
||||
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
|
||||
chunk_ids = input_ids[start_idx:cur_idx]
|
||||
while start_idx < len(input_ids):
|
||||
splits.append(tokenizer.decode(chunk_ids))
|
||||
if cur_idx == len(input_ids):
|
||||
break
|
||||
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
|
||||
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
|
||||
chunk_ids = input_ids[start_idx:cur_idx]
|
||||
return splits
|
Reference in New Issue
Block a user