mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
text-splitters[minor], langchain[minor], community[patch], templates, docs: langchain-text-splitters 0.0.1 (#18346)
This commit is contained in:
120
libs/text-splitters/langchain_text_splitters/json.py
Normal file
120
libs/text-splitters/langchain_text_splitters/json.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
|
||||
class RecursiveJsonSplitter:
|
||||
def __init__(
|
||||
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.max_chunk_size = max_chunk_size
|
||||
self.min_chunk_size = (
|
||||
min_chunk_size
|
||||
if min_chunk_size is not None
|
||||
else max(max_chunk_size - 200, 50)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _json_size(data: Dict) -> int:
|
||||
"""Calculate the size of the serialized JSON object."""
|
||||
return len(json.dumps(data))
|
||||
|
||||
@staticmethod
|
||||
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
|
||||
"""Set a value in a nested dictionary based on the given path."""
|
||||
for key in path[:-1]:
|
||||
d = d.setdefault(key, {})
|
||||
d[path[-1]] = value
|
||||
|
||||
def _list_to_dict_preprocessing(self, data: Any) -> Any:
|
||||
if isinstance(data, dict):
|
||||
# Process each key-value pair in the dictionary
|
||||
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
|
||||
elif isinstance(data, list):
|
||||
# Convert the list to a dictionary with index-based keys
|
||||
return {
|
||||
str(i): self._list_to_dict_preprocessing(item)
|
||||
for i, item in enumerate(data)
|
||||
}
|
||||
else:
|
||||
# Base case: the item is neither a dict nor a list, so return it unchanged
|
||||
return data
|
||||
|
||||
def _json_split(
|
||||
self,
|
||||
data: Dict[str, Any],
|
||||
current_path: List[str] = [],
|
||||
chunks: List[Dict] = [{}],
|
||||
) -> List[Dict]:
|
||||
"""
|
||||
Split json into maximum size dictionaries while preserving structure.
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
for key, value in data.items():
|
||||
new_path = current_path + [key]
|
||||
chunk_size = self._json_size(chunks[-1])
|
||||
size = self._json_size({key: value})
|
||||
remaining = self.max_chunk_size - chunk_size
|
||||
|
||||
if size < remaining:
|
||||
# Add item to current chunk
|
||||
self._set_nested_dict(chunks[-1], new_path, value)
|
||||
else:
|
||||
if chunk_size >= self.min_chunk_size:
|
||||
# Chunk is big enough, start a new chunk
|
||||
chunks.append({})
|
||||
|
||||
# Iterate
|
||||
self._json_split(value, new_path, chunks)
|
||||
else:
|
||||
# handle single item
|
||||
self._set_nested_dict(chunks[-1], current_path, data)
|
||||
return chunks
|
||||
|
||||
def split_json(
|
||||
self,
|
||||
json_data: Dict[str, Any],
|
||||
convert_lists: bool = False,
|
||||
) -> List[Dict]:
|
||||
"""Splits JSON into a list of JSON chunks"""
|
||||
|
||||
if convert_lists:
|
||||
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
|
||||
else:
|
||||
chunks = self._json_split(json_data)
|
||||
|
||||
# Remove the last chunk if it's empty
|
||||
if not chunks[-1]:
|
||||
chunks.pop()
|
||||
return chunks
|
||||
|
||||
def split_text(
|
||||
self, json_data: Dict[str, Any], convert_lists: bool = False
|
||||
) -> List[str]:
|
||||
"""Splits JSON into a list of JSON formatted strings"""
|
||||
|
||||
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
|
||||
|
||||
# Convert to string
|
||||
return [json.dumps(chunk) for chunk in chunks]
|
||||
|
||||
def create_documents(
|
||||
self,
|
||||
texts: List[Dict],
|
||||
convert_lists: bool = False,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
) -> List[Document]:
|
||||
"""Create documents from a list of json objects (Dict)."""
|
||||
_metadatas = metadatas or [{}] * len(texts)
|
||||
documents = []
|
||||
for i, text in enumerate(texts):
|
||||
for chunk in self.split_text(json_data=text, convert_lists=convert_lists):
|
||||
metadata = copy.deepcopy(_metadatas[i])
|
||||
new_doc = Document(page_content=chunk, metadata=metadata)
|
||||
documents.append(new_doc)
|
||||
return documents
|
Reference in New Issue
Block a user