feat: Implement stream interface (#15875)

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Major changes:

- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`

---------

Signed-off-by: Xin Liu <sam@secondstate.io>
This commit is contained in:
Xin Liu
2024-01-12 13:32:48 +08:00
committed by GitHub
parent ec4dab0449
commit 5efec068c9
8 changed files with 299 additions and 128 deletions

View File

@@ -0,0 +1,135 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# LlamaEdge\n",
"\n",
"[LlamaEdge](https://github.com/second-state/LlamaEdge) allows you to chat with LLMs of [GGUF](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/README.md) format both locally and via chat service.\n",
"\n",
"- `LlamaEdgeChatService` provides developers an OpenAI API compatible service to chat with LLMs via HTTP requests.\n",
"\n",
"- `LlamaEdgeChatLocal` enables developers to chat with LLMs locally (coming soon).\n",
"\n",
"Both `LlamaEdgeChatService` and `LlamaEdgeChatLocal` run on the infrastructure driven by [WasmEdge Runtime](https://wasmedge.org/), which provides a lightweight and portable WebAssembly container environment for LLM inference tasks.\n",
"\n",
"## Chat via API Service\n",
"\n",
"`LlamaEdgeChatService` works on the `llama-api-server`. Following the steps in [llama-api-server quick-start](https://github.com/second-state/llama-utils/tree/main/api-server#readme), you can host your own API service so that you can chat with any models you like on any device you have anywhere as long as the internet is available."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.llama_edge import LlamaEdgeChatService\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Chat with LLMs in the non-streaming mode"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Bot] Hello! The capital of France is Paris.\n"
]
}
],
"source": [
"# service url\n",
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
"\n",
"# create wasm-chat service instance\n",
"chat = LlamaEdgeChatService(service_url=service_url)\n",
"\n",
"# create message sequence\n",
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
"user_message = HumanMessage(content=\"What is the capital of France?\")\n",
"messages = [system_message, user_message]\n",
"\n",
"# chat with wasm-chat service\n",
"response = chat(messages)\n",
"\n",
"print(f\"[Bot] {response.content}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Chat with LLMs in the streaming mode"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Bot] Hello! I'm happy to help you with your question. The capital of Norway is Oslo.\n"
]
}
],
"source": [
"# service url\n",
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
"\n",
"# create wasm-chat service instance\n",
"chat = LlamaEdgeChatService(service_url=service_url, streaming=True)\n",
"\n",
"# create message sequence\n",
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
"user_message = HumanMessage(content=\"What is the capital of Norway?\")\n",
"messages = [\n",
" system_message,\n",
" user_message,\n",
"]\n",
"\n",
"output = \"\"\n",
"for chunk in chat.stream(messages):\n",
" # print(chunk.content, end=\"\", flush=True)\n",
" output += chunk.content\n",
"\n",
"print(f\"[Bot] {output}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,85 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Wasm Chat\n",
"\n",
"`Wasm-chat` allows you to chat with LLMs of [GGUF](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/README.md) format both locally and via chat service.\n",
"\n",
"- `WasmChatService` provides developers an OpenAI API compatible service to chat with LLMs via HTTP requests.\n",
"\n",
"- `WasmChatLocal` enables developers to chat with LLMs locally (coming soon).\n",
"\n",
"Both `WasmChatService` and `WasmChatLocal` run on the infrastructure driven by [WasmEdge Runtime](https://wasmedge.org/), which provides a lightweight and portable WebAssembly container environment for LLM inference tasks.\n",
"\n",
"## Chat via API Service\n",
"\n",
"`WasmChatService` provides chat services by the `llama-api-server`. Following the steps in [llama-api-server quick-start](https://github.com/second-state/llama-utils/tree/main/api-server#readme), you can host your own API service so that you can chat with any models you like on any device you have anywhere as long as the internet is available."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.wasm_chat import WasmChatService\n",
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Bot] Paris\n"
]
}
],
"source": [
"# service url\n",
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
"\n",
"# create wasm-chat service instance\n",
"chat = WasmChatService(service_url=service_url)\n",
"\n",
"# create message sequence\n",
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
"user_message = HumanMessage(content=\"What is the capital of France?\")\n",
"messages = [system_message, user_message]\n",
"\n",
"# chat with wasm-chat service\n",
"response = chat(messages)\n",
"\n",
"print(f\"[Bot] {response.content}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}