mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-03 12:07:36 +00:00
feat: Implement stream
interface (#15875)
<!-- Thank you for contributing to LangChain! Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified. Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes if applicable, - **Dependencies:** any dependencies required for this change, - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --> Major changes: - Rename `wasm_chat.py` to `llama_edge.py` - Rename the `WasmChatService` class to `ChatService` - Implement the `stream` interface for `ChatService` - Add `test_chat_wasm_service_streaming` in the integration test - Update `llama_edge.ipynb` --------- Signed-off-by: Xin Liu <sam@secondstate.io>
This commit is contained in:
241
libs/community/langchain_community/chat_models/llama_edge.py
Normal file
241
libs/community/langchain_community/chat_models/llama_edge.py
Normal file
@@ -0,0 +1,241 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
generate_from_stream,
|
||||
)
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
from langchain_core.utils import get_pydantic_field_names
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
role = _dict["role"]
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict["content"])
|
||||
elif role == "assistant":
|
||||
return AIMessage(content=_dict.get("content", "") or "")
|
||||
else:
|
||||
return ChatMessage(content=_dict["content"], role=role)
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
message_dict: Dict[str, Any]
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
|
||||
return message_dict
|
||||
|
||||
|
||||
def _convert_delta_to_message_chunk(
|
||||
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||
) -> BaseMessageChunk:
|
||||
role = _dict.get("role")
|
||||
content = _dict.get("content") or ""
|
||||
|
||||
if role == "user" or default_class == HumanMessageChunk:
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(content=content)
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
else:
|
||||
return default_class(content=content)
|
||||
|
||||
|
||||
class LlamaEdgeChatService(BaseChatModel):
|
||||
"""Chat with LLMs via `llama-api-server`
|
||||
|
||||
For the information about `llama-api-server`, visit https://github.com/second-state/LlamaEdge
|
||||
"""
|
||||
|
||||
request_timeout: int = 60
|
||||
"""request timeout for chat http requests"""
|
||||
service_url: Optional[str] = None
|
||||
"""URL of WasmChat service"""
|
||||
model: str = "NA"
|
||||
"""model name, default is `NA`."""
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
if self.streaming:
|
||||
stream_iter = self._stream(
|
||||
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return generate_from_stream(stream_iter)
|
||||
|
||||
res = self._chat(messages, **kwargs)
|
||||
|
||||
if res.status_code != 200:
|
||||
raise ValueError(f"Error code: {res.status_code}, reason: {res.reason}")
|
||||
|
||||
response = res.json()
|
||||
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
res = self._chat(messages, **kwargs)
|
||||
|
||||
default_chunk_class = AIMessageChunk
|
||||
substring = '"object":"chat.completion.chunk"}'
|
||||
for line in res.iter_lines():
|
||||
chunks = []
|
||||
if line:
|
||||
json_string = line.decode("utf-8")
|
||||
|
||||
# Find all positions of the substring
|
||||
positions = [m.start() for m in re.finditer(substring, json_string)]
|
||||
positions = [-1 * len(substring)] + positions
|
||||
|
||||
for i in range(len(positions) - 1):
|
||||
chunk = json.loads(
|
||||
json_string[
|
||||
positions[i] + len(substring) : positions[i + 1]
|
||||
+ len(substring)
|
||||
]
|
||||
)
|
||||
chunks.append(chunk)
|
||||
|
||||
for chunk in chunks:
|
||||
if not isinstance(chunk, dict):
|
||||
chunk = chunk.dict()
|
||||
if len(chunk["choices"]) == 0:
|
||||
continue
|
||||
|
||||
choice = chunk["choices"][0]
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], default_chunk_class
|
||||
)
|
||||
if (
|
||||
choice.get("finish_reason") is not None
|
||||
and choice.get("finish_reason") == "stop"
|
||||
):
|
||||
break
|
||||
finish_reason = choice.get("finish_reason")
|
||||
generation_info = (
|
||||
dict(finish_reason=finish_reason)
|
||||
if finish_reason is not None
|
||||
else None
|
||||
)
|
||||
default_chunk_class = chunk.__class__
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
||||
|
||||
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
||||
if self.service_url is None:
|
||||
res = requests.models.Response()
|
||||
res.status_code = 503
|
||||
res.reason = "The IP address or port of the chat service is incorrect."
|
||||
return res
|
||||
|
||||
service_url = f"{self.service_url}/v1/chat/completions"
|
||||
|
||||
if self.streaming:
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"messages": [_convert_message_to_dict(m) for m in messages],
|
||||
"stream": self.streaming,
|
||||
}
|
||||
else:
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"messages": [_convert_message_to_dict(m) for m in messages],
|
||||
}
|
||||
|
||||
res = requests.post(
|
||||
url=service_url,
|
||||
timeout=self.request_timeout,
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
data=json.dumps(payload),
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
||||
message = _convert_dict_to_message(response["choices"][0].get("message"))
|
||||
generations = [ChatGeneration(message=message)]
|
||||
|
||||
token_usage = response["usage"]
|
||||
llm_output = {"token_usage": token_usage, "model": self.model}
|
||||
return ChatResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "wasm-chat"
|
Reference in New Issue
Block a user