mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-17 23:41:46 +00:00
add retrieval agent (#13317)
This commit is contained in:
75
templates/retrieval-agent/retrieval_agent/chain.py
Normal file
75
templates/retrieval-agent/retrieval_agent/chain.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import os
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.chat_models import AzureChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema.messages import AIMessage, HumanMessage
|
||||
from langchain.tools import ArxivQueryRun
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain.utilities import ArxivAPIWrapper
|
||||
|
||||
|
||||
class ArxivInput(BaseModel):
|
||||
query: str = Field(description="search query to look up")
|
||||
|
||||
|
||||
# Create the tool
|
||||
arxiv_tool = ArxivQueryRun(api_wrapper=ArxivAPIWrapper(), args_schema=ArxivInput)
|
||||
tools = [arxiv_tool]
|
||||
llm = AzureChatOpenAI(
|
||||
temperature=0,
|
||||
deployment_name=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
|
||||
openai_api_base=os.environ["AZURE_OPENAI_API_BASE"],
|
||||
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
|
||||
openai_api_key=os.environ["AZURE_OPENAI_API_KEY"],
|
||||
)
|
||||
assistant_system_message = """You are a helpful research assistant. \
|
||||
Lookup relevant information as needed."""
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", assistant_system_message),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user