mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 21:47:12 +00:00
mongo parent document retrieval (#12887)
This commit is contained in:
@@ -0,0 +1,91 @@
|
||||
import os
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.document import Document
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
||||
from pymongo import MongoClient
|
||||
|
||||
MONGO_URI = os.environ["MONGO_URI"]
|
||||
PARENT_DOC_ID_KEY = "parent_doc_id"
|
||||
# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
|
||||
DB_NAME = "langchain-test-2"
|
||||
COLLECTION_NAME = "test"
|
||||
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
|
||||
EMBEDDING_FIELD_NAME = "embedding"
|
||||
client = MongoClient(MONGO_URI)
|
||||
db = client[DB_NAME]
|
||||
MONGODB_COLLECTION = db[COLLECTION_NAME]
|
||||
|
||||
|
||||
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
|
||||
MONGO_URI,
|
||||
DB_NAME + "." + COLLECTION_NAME,
|
||||
OpenAIEmbeddings(disallowed_special=()),
|
||||
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
||||
)
|
||||
|
||||
|
||||
def retrieve(query: str):
|
||||
results = vector_search.similarity_search(
|
||||
query,
|
||||
k=4,
|
||||
pre_filter={"doc_level": {"$eq": "child"}},
|
||||
post_filter_pipeline=[
|
||||
{"$project": {"embedding": 0}},
|
||||
{
|
||||
"$lookup": {
|
||||
"from": COLLECTION_NAME,
|
||||
"localField": PARENT_DOC_ID_KEY,
|
||||
"foreignField": PARENT_DOC_ID_KEY,
|
||||
"as": "parent_context",
|
||||
"pipeline": [
|
||||
{"$match": {"doc_level": "parent"}},
|
||||
{"$limit": 1},
|
||||
{"$project": {"embedding": 0}},
|
||||
],
|
||||
}
|
||||
},
|
||||
],
|
||||
)
|
||||
parent_docs = []
|
||||
parent_doc_ids = set()
|
||||
for result in results:
|
||||
res = result.metadata["parent_context"][0]
|
||||
text = res.pop("text")
|
||||
# This causes serialization issues.
|
||||
res.pop("_id")
|
||||
parent_doc = Document(page_content=text, metadata=res)
|
||||
if parent_doc.metadata[PARENT_DOC_ID_KEY] not in parent_doc_ids:
|
||||
parent_doc_ids.add(parent_doc.metadata[PARENT_DOC_ID_KEY])
|
||||
parent_docs.append(parent_doc)
|
||||
return parent_docs
|
||||
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
model = ChatOpenAI()
|
||||
chain = (
|
||||
RunnableParallel({"context": retrieve, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user