mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 12:39:32 +00:00
Add template for gpt-crawler (#13625)
Template for RAG using [gpt-crawler](https://github.com/BuilderIO/gpt-crawler). --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
62
templates/rag-gpt-crawler/rag_gpt_crawler/chain.py
Normal file
62
templates/rag-gpt-crawler/rag_gpt_crawler/chain.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema import Document
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
|
||||
# Load output from gpt crawler
|
||||
path_to_gptcrawler = Path(__file__).parent.parent / "output.json"
|
||||
data = json.loads(Path(path_to_gptcrawler).read_text())
|
||||
docs = [
|
||||
Document(
|
||||
page_content=dict_["html"],
|
||||
metadata={"title": dict_["title"], "url": dict_["url"]},
|
||||
)
|
||||
for dict_ in data
|
||||
]
|
||||
|
||||
# Split
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
||||
all_splits = text_splitter.split_documents(docs)
|
||||
|
||||
# Add to vectorDB
|
||||
vectorstore = Chroma.from_documents(
|
||||
documents=all_splits,
|
||||
collection_name="rag-gpt-builder",
|
||||
embedding=OpenAIEmbeddings(),
|
||||
)
|
||||
retriever = vectorstore.as_retriever()
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# LLM
|
||||
model = ChatOpenAI()
|
||||
|
||||
# RAG chain
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user