mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-20 11:31:58 +00:00
community: Fix a bug in handling kwargs overwrites in Predibase integration, and update the documentation. (#25893)
Thank you for contributing to LangChain! - [x] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This commit is contained in:
parent
28f6ff6fcd
commit
617a4e617b
@ -70,6 +70,10 @@
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" adapter_id=\"e2e_nlg\",\n",
|
||||
" adapter_version=1,\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -87,6 +91,10 @@
|
||||
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" adapter_id=\"predibase/e2e_nlg\",\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -96,7 +104,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"response = model.invoke(\"Can you recommend me a nice dry wine?\")\n",
|
||||
"# Optionally use `kwargs` to dynamically overwrite \"generate()\" settings.\n",
|
||||
"response = model.invoke(\n",
|
||||
" \"Can you recommend me a nice dry wine?\",\n",
|
||||
" **{\"temperature\": 0.5, \"max_new_tokens\": 1024},\n",
|
||||
")\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
@ -127,6 +139,10 @@
|
||||
" model=\"mistral-7b\",\n",
|
||||
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -147,6 +163,10 @@
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" adapter_id=\"e2e_nlg\",\n",
|
||||
" adapter_version=1,\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -162,6 +182,10 @@
|
||||
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" adapter_id=\"predibase/e2e_nlg\",\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -259,6 +283,10 @@
|
||||
" predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)\n",
|
||||
" adapter_id=\"my-finetuned-adapter-id\", # Supports both, Predibase-hosted and HuggingFace-hosted adapter repositories.\n",
|
||||
" adapter_version=1, # required for Predibase-hosted adapters (ignored for HuggingFace-hosted adapters)\n",
|
||||
" **{\n",
|
||||
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
|
||||
" \"max_new_tokens\": 5, # default is 256\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"# replace my-base-LLM with the name of your choice of a serverless base model in Predibase"
|
||||
]
|
||||
@ -269,7 +297,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# response = model.invoke(\"Can you help categorize the following emails into positive, negative, and neutral?\")"
|
||||
"# Optionally use `kwargs` to dynamically overwrite \"generate()\" settings.\n",
|
||||
"# response = model.invoke(\"Can you help categorize the following emails into positive, negative, and neutral?\", **{\"temperature\": 0.5, \"max_new_tokens\": 1024})"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@ -21,9 +21,24 @@ model = Predibase(
|
||||
model="mistral-7b",
|
||||
predibase_api_key=os.environ.get("PREDIBASE_API_TOKEN"),
|
||||
predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)
|
||||
"""
|
||||
Optionally use `model_kwargs` to set new default "generate()" settings. For example:
|
||||
{
|
||||
"api_token": os.environ.get("HUGGING_FACE_HUB_TOKEN"),
|
||||
"max_new_tokens": 5, # default is 256
|
||||
}
|
||||
"""
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
response = model.invoke("Can you recommend me a nice dry wine?")
|
||||
"""
|
||||
Optionally use `kwargs` to dynamically overwrite "generate()" settings. For example:
|
||||
{
|
||||
"temperature": 0.5, # default is the value in model_kwargs or 0.1 (initialization default)
|
||||
"max_new_tokens": 1024, # default is the value in model_kwargs or 256 (initialization default)
|
||||
}
|
||||
"""
|
||||
response = model.invoke("Can you recommend me a nice dry wine?", **kwargs)
|
||||
print(response)
|
||||
```
|
||||
|
||||
@ -42,9 +57,24 @@ model = Predibase(
|
||||
predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)
|
||||
adapter_id="e2e_nlg",
|
||||
adapter_version=1,
|
||||
"""
|
||||
Optionally use `model_kwargs` to set new default "generate()" settings. For example:
|
||||
{
|
||||
"api_token": os.environ.get("HUGGING_FACE_HUB_TOKEN"),
|
||||
"max_new_tokens": 5, # default is 256
|
||||
}
|
||||
"""
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
response = model.invoke("Can you recommend me a nice dry wine?")
|
||||
"""
|
||||
Optionally use `kwargs` to dynamically overwrite "generate()" settings. For example:
|
||||
{
|
||||
"temperature": 0.5, # default is the value in model_kwargs or 0.1 (initialization default)
|
||||
"max_new_tokens": 1024, # default is the value in model_kwargs or 256 (initialization default)
|
||||
}
|
||||
"""
|
||||
response = model.invoke("Can you recommend me a nice dry wine?", **kwargs)
|
||||
print(response)
|
||||
```
|
||||
|
||||
@ -62,8 +92,23 @@ model = Predibase(
|
||||
predibase_api_key=os.environ.get("PREDIBASE_API_TOKEN"),
|
||||
predibase_sdk_version=None, # optional parameter (defaults to the latest Predibase SDK version if omitted)
|
||||
adapter_id="predibase/e2e_nlg",
|
||||
"""
|
||||
Optionally use `model_kwargs` to set new default "generate()" settings. For example:
|
||||
{
|
||||
"api_token": os.environ.get("HUGGING_FACE_HUB_TOKEN"),
|
||||
"max_new_tokens": 5, # default is 256
|
||||
}
|
||||
"""
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
response = model.invoke("Can you recommend me a nice dry wine?")
|
||||
"""
|
||||
Optionally use `kwargs` to dynamically overwrite "generate()" settings. For example:
|
||||
{
|
||||
"temperature": 0.5, # default is the value in model_kwargs or 0.1 (initialization default)
|
||||
"max_new_tokens": 1024, # default is the value in model_kwargs or 256 (initialization default)
|
||||
}
|
||||
"""
|
||||
response = model.invoke("Can you recommend me a nice dry wine?", **kwargs)
|
||||
print(response)
|
||||
```
|
||||
|
@ -50,8 +50,8 @@ class Predibase(LLM):
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
options: Dict[str, Union[str, float]] = {
|
||||
**(self.model_kwargs or {}),
|
||||
**self.default_options_for_generation,
|
||||
**(self.model_kwargs or {}),
|
||||
**(kwargs or {}),
|
||||
}
|
||||
if self._is_deprecated_sdk_version():
|
||||
|
Loading…
Reference in New Issue
Block a user