mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 23:29:21 +00:00
update_readme (#25665)
Updated LangChain Expression Language (LCEL). for Easier Understanding
This commit is contained in:
parent
0091947efd
commit
6247259438
12
README.md
12
README.md
@ -21,11 +21,13 @@ Fill out [this form](https://www.langchain.com/contact-sales) to speak with our
|
||||
## Quick Install
|
||||
|
||||
With pip:
|
||||
|
||||
```bash
|
||||
pip install langchain
|
||||
```
|
||||
|
||||
With conda:
|
||||
|
||||
```bash
|
||||
conda install langchain -c conda-forge
|
||||
```
|
||||
@ -37,11 +39,12 @@ conda install langchain -c conda-forge
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
|
||||
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
|
||||
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
|
||||
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
|
||||
|
||||
### Open-source libraries
|
||||
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
@ -49,9 +52,11 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
|
||||
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
|
||||
|
||||
### Productionization:
|
||||
|
||||
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
|
||||
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
|
||||
|
||||

|
||||
@ -76,7 +81,9 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
|
||||
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
|
||||
The main value props of the LangChain libraries are:
|
||||
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
@ -84,7 +91,7 @@ Off-the-shelf chains make it easy to get started. Components make it easy to cus
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
|
||||
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
|
||||
|
||||
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
|
||||
@ -123,7 +130,6 @@ Please see [here](https://python.langchain.com) for full documentation, which in
|
||||
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
|
||||
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
|
||||
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
Loading…
Reference in New Issue
Block a user