diff --git a/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb index c26e04d0fd2..ff44f6c6d95 100644 --- a/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb @@ -162,12 +162,14 @@ "source": [ "from langchain.chains.query_constructor.base import AttributeInfo\n", "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", - "from langchain_openai import OpenAI\n", + "from langchain_openai import ChatOpenAI\n", "\n", "metadata_field_info = [\n", " AttributeInfo(\n", " name=\"genre\",\n", - " description=\"The genres of the movie\",\n", + " description=\"The genres of the movie. \"\n", + " \"It only supports equal and contain comparisons. \"\n", + " \"Here are some examples: genre = [' A '], genre = [' A ', 'B'], contain (genre, 'A')\",\n", " type=\"list[string]\",\n", " ),\n", " # If you want to include length of a list, just define it as a new column\n", @@ -193,7 +195,7 @@ " ),\n", "]\n", "document_content_description = \"Brief summary of a movie\"\n", - "llm = OpenAI(temperature=0)\n", + "llm = ChatOpenAI(temperature=0, model_name=\"gpt-4o\")\n", "retriever = SelfQueryRetriever.from_llm(\n", " llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n", ")" diff --git a/libs/experimental/langchain_experimental/sql/vector_sql.py b/libs/experimental/langchain_experimental/sql/vector_sql.py index aa69c2d6966..a82f7b51822 100644 --- a/libs/experimental/langchain_experimental/sql/vector_sql.py +++ b/libs/experimental/langchain_experimental/sql/vector_sql.py @@ -40,7 +40,7 @@ class VectorSQLOutputParser(BaseOutputParser[str]): @classmethod def from_embeddings( cls, model: Embeddings, distance_func_name: str = "distance", **kwargs: Any - ) -> BaseOutputParser: + ) -> VectorSQLOutputParser: return cls(model=model, distance_func_name=distance_func_name, **kwargs) def parse(self, text: str) -> str: