mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-05 04:38:26 +00:00
Promptlayer Callback (#6975)
Co-authored-by: Saleh Hindi <saleh.hindi.one@gmail.com> Co-authored-by: jped <jonathanped@gmail.com>
This commit is contained in:
parent
13c62cf6b1
commit
64039b9f11
213
docs/extras/modules/callbacks/integrations/promptlayer.ipynb
Normal file
213
docs/extras/modules/callbacks/integrations/promptlayer.ipynb
Normal file
@ -0,0 +1,213 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# PromptLayer\n",
|
||||||
|
"\n",
|
||||||
|
"<img src=\"https://promptlayer.com/logo.png\" height=\"300\">\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"[PromptLayer](https://promptlayer.com) is a an observability platform for prompts and LLMs. In this guide we will go over how to setup the `PromptLayerCallbackHandler`. While PromptLayer does have LLMs that integrate directly with LangChain (eg [`PromptLayerOpenAI`](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/promptlayer_openai)), this callback will be an easier and more feature rich way to integrate PromptLayer with any model on LangChain. \n",
|
||||||
|
"\n",
|
||||||
|
"This callback is also the recommended way to connect with PromptLayer when building Chains and Agents on LangChain."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Installation and Setup"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install promptlayer --upgrade"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Getting API Credentials\n",
|
||||||
|
"\n",
|
||||||
|
"If you have not already create an account on [PromptLayer](https://www.promptlayer.com) and get an API key by clicking on the settings cog in the navbar\n",
|
||||||
|
"Set it as an environment variabled called `PROMPTLAYER_API_KEY`\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Usage\n",
|
||||||
|
"\n",
|
||||||
|
"To get started with `PromptLayerCallbackHandler` is fairly simple, it takes two optional arguments:\n",
|
||||||
|
"1. `pl_tags` - an optional list of strings that will be tags tracked on PromptLayer\n",
|
||||||
|
"2. `pl_id_callback` - an optional function that will get a `promptlayer_request_id` as an argument. This id can be used with all of PromptLayers tracking features to track, metadata, scores, and prompt usage."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Simple Example\n",
|
||||||
|
"\n",
|
||||||
|
"In this simple example we use `PromptLayerCallbackHandler` with `ChatOpenAI`. We add a PromptLayer tag named `chatopenai`"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"content=\"Sure, here's one:\\n\\nWhy did the tomato turn red?\\n\\nBecause it saw the salad dressing!\" additional_kwargs={} example=False\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
|
"from langchain.schema import (\n",
|
||||||
|
" AIMessage,\n",
|
||||||
|
" HumanMessage,\n",
|
||||||
|
" SystemMessage,\n",
|
||||||
|
")\n",
|
||||||
|
"from langchain.callbacks import PromptLayerCallbackHandler\n",
|
||||||
|
"\n",
|
||||||
|
"chat_llm = ChatOpenAI(\n",
|
||||||
|
" temperature=0,\n",
|
||||||
|
" callbacks=[PromptLayerCallbackHandler(pl_tags=[\"chatopenai\"])],\n",
|
||||||
|
")\n",
|
||||||
|
"llm_results = chat_llm(\n",
|
||||||
|
" [\n",
|
||||||
|
" HumanMessage(content=\"What comes after 1,2,3 ?\"),\n",
|
||||||
|
" HumanMessage(content=\"Tell me another joke?\"),\n",
|
||||||
|
" ]\n",
|
||||||
|
")\n",
|
||||||
|
"print(llm_results)\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Full Featured Example\n",
|
||||||
|
"\n",
|
||||||
|
"In this example we unlock more of the power of PromptLayer.\n",
|
||||||
|
"\n",
|
||||||
|
"We are using the Prompt Registry and fetching the prompt called `example`.\n",
|
||||||
|
"\n",
|
||||||
|
"We also define a `pl_id_callback` function that tracks a score, metadata and the prompt used. Read more about tracking on [our docs](docs.promptlayer.com)."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"prompt layer id 6050929\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"'\\nToasterCo.'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import OpenAI\n",
|
||||||
|
"from langchain.callbacks import PromptLayerCallbackHandler\n",
|
||||||
|
"import promptlayer\n",
|
||||||
|
"\n",
|
||||||
|
"def pl_id_callback(promptlayer_request_id):\n",
|
||||||
|
" print(\"prompt layer id \", promptlayer_request_id)\n",
|
||||||
|
" promptlayer.track.score(\n",
|
||||||
|
" request_id=promptlayer_request_id, score=100\n",
|
||||||
|
" ) # score is an integer 0-100\n",
|
||||||
|
" promptlayer.track.metadata(\n",
|
||||||
|
" request_id=promptlayer_request_id, metadata={\"foo\": \"bar\"}\n",
|
||||||
|
" ) # metadata is a dictionary of key value pairs that is tracked on PromptLayer\n",
|
||||||
|
" promptlayer.track.prompt(\n",
|
||||||
|
" request_id=promptlayer_request_id,\n",
|
||||||
|
" prompt_name=\"example\",\n",
|
||||||
|
" prompt_input_variables={\"product\": \"toasters\"},\n",
|
||||||
|
" version=1,\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"openai_llm = OpenAI(\n",
|
||||||
|
" model_name=\"text-davinci-002\",\n",
|
||||||
|
" callbacks=[PromptLayerCallbackHandler(pl_id_callback=pl_id_callback)],\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"example_prompt = promptlayer.prompts.get(\"example\", version=1, langchain=True)\n",
|
||||||
|
"openai_llm(example_prompt.format(product=\"toasters\"))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"That is all it takes! After setup all your requests will show up on the PromptLayer dasahboard.\n",
|
||||||
|
"This callback also works with any LLM implemented on LangChain."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "base",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.8"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "c4fe2cd85a8d9e8baaec5340ce66faff1c77581a9f43e6c45e85e09b6fced008"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
@ -16,6 +16,7 @@ from langchain.callbacks.manager import (
|
|||||||
)
|
)
|
||||||
from langchain.callbacks.mlflow_callback import MlflowCallbackHandler
|
from langchain.callbacks.mlflow_callback import MlflowCallbackHandler
|
||||||
from langchain.callbacks.openai_info import OpenAICallbackHandler
|
from langchain.callbacks.openai_info import OpenAICallbackHandler
|
||||||
|
from langchain.callbacks.promptlayer_callback import PromptLayerCallbackHandler
|
||||||
from langchain.callbacks.stdout import StdOutCallbackHandler
|
from langchain.callbacks.stdout import StdOutCallbackHandler
|
||||||
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
||||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
@ -30,6 +31,7 @@ __all__ = [
|
|||||||
"AimCallbackHandler",
|
"AimCallbackHandler",
|
||||||
"ArgillaCallbackHandler",
|
"ArgillaCallbackHandler",
|
||||||
"ArizeCallbackHandler",
|
"ArizeCallbackHandler",
|
||||||
|
"PromptLayerCallbackHandler",
|
||||||
"ArthurCallbackHandler",
|
"ArthurCallbackHandler",
|
||||||
"ClearMLCallbackHandler",
|
"ClearMLCallbackHandler",
|
||||||
"CometCallbackHandler",
|
"CometCallbackHandler",
|
||||||
|
160
langchain/callbacks/promptlayer_callback.py
Normal file
160
langchain/callbacks/promptlayer_callback.py
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
"""Callback handler for promptlayer."""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
|
||||||
|
from uuid import UUID
|
||||||
|
|
||||||
|
from langchain.callbacks.base import BaseCallbackHandler
|
||||||
|
from langchain.schema import (
|
||||||
|
AIMessage,
|
||||||
|
BaseMessage,
|
||||||
|
ChatGeneration,
|
||||||
|
ChatMessage,
|
||||||
|
HumanMessage,
|
||||||
|
LLMResult,
|
||||||
|
SystemMessage,
|
||||||
|
)
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
import promptlayer
|
||||||
|
|
||||||
|
|
||||||
|
def _lazy_import_promptlayer() -> promptlayer:
|
||||||
|
"""Lazy import promptlayer to avoid circular imports."""
|
||||||
|
try:
|
||||||
|
import promptlayer
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"The PromptLayerCallbackHandler requires the promptlayer package. "
|
||||||
|
" Please install it with `pip install promptlayer`."
|
||||||
|
)
|
||||||
|
return promptlayer
|
||||||
|
|
||||||
|
|
||||||
|
class PromptLayerCallbackHandler(BaseCallbackHandler):
|
||||||
|
"""Callback handler for promptlayer."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
pl_id_callback: Optional[Callable[..., Any]] = None,
|
||||||
|
pl_tags: Optional[List[str]] = [],
|
||||||
|
) -> None:
|
||||||
|
"""Initialize the PromptLayerCallbackHandler."""
|
||||||
|
_lazy_import_promptlayer()
|
||||||
|
self.pl_id_callback = pl_id_callback
|
||||||
|
self.pl_tags = pl_tags
|
||||||
|
self.runs: Dict[UUID, Dict[str, Any]] = {}
|
||||||
|
|
||||||
|
def on_chat_model_start(
|
||||||
|
self,
|
||||||
|
serialized: Dict[str, Any],
|
||||||
|
messages: List[List[BaseMessage]],
|
||||||
|
*,
|
||||||
|
run_id: UUID,
|
||||||
|
parent_run_id: Optional[UUID] = None,
|
||||||
|
tags: Optional[List[str]] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Any:
|
||||||
|
self.runs[run_id] = {
|
||||||
|
"messages": [self._create_message_dicts(m)[0] for m in messages],
|
||||||
|
"invocation_params": kwargs.get("invocation_params", {}),
|
||||||
|
"name": ".".join(serialized["id"]),
|
||||||
|
"request_start_time": datetime.datetime.now().timestamp(),
|
||||||
|
"tags": tags,
|
||||||
|
}
|
||||||
|
|
||||||
|
def on_llm_start(
|
||||||
|
self,
|
||||||
|
serialized: Dict[str, Any],
|
||||||
|
prompts: List[str],
|
||||||
|
*,
|
||||||
|
run_id: UUID,
|
||||||
|
parent_run_id: Optional[UUID] = None,
|
||||||
|
tags: Optional[List[str]] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Any:
|
||||||
|
self.runs[run_id] = {
|
||||||
|
"prompts": prompts,
|
||||||
|
"invocation_params": kwargs.get("invocation_params", {}),
|
||||||
|
"name": ".".join(serialized["id"]),
|
||||||
|
"request_start_time": datetime.datetime.now().timestamp(),
|
||||||
|
"tags": tags,
|
||||||
|
}
|
||||||
|
|
||||||
|
def on_llm_end(
|
||||||
|
self,
|
||||||
|
response: LLMResult,
|
||||||
|
*,
|
||||||
|
run_id: UUID,
|
||||||
|
parent_run_id: Optional[UUID] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> None:
|
||||||
|
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||||||
|
|
||||||
|
run_info = self.runs.get(run_id, {})
|
||||||
|
if not run_info:
|
||||||
|
return
|
||||||
|
run_info["request_end_time"] = datetime.datetime.now().timestamp()
|
||||||
|
for i in range(len(response.generations)):
|
||||||
|
generation = response.generations[i][0]
|
||||||
|
|
||||||
|
resp = {
|
||||||
|
"text": generation.text,
|
||||||
|
"llm_output": response.llm_output,
|
||||||
|
}
|
||||||
|
model_params = run_info.get("invocation_params", {})
|
||||||
|
is_chat_model = run_info.get("messages", None) is not None
|
||||||
|
model_input = (
|
||||||
|
run_info.get("messages", [])[i]
|
||||||
|
if is_chat_model
|
||||||
|
else [run_info.get("prompts", [])[i]]
|
||||||
|
)
|
||||||
|
model_response = (
|
||||||
|
[self._convert_message_to_dict(generation.message)]
|
||||||
|
if is_chat_model and isinstance(generation, ChatGeneration)
|
||||||
|
else resp
|
||||||
|
)
|
||||||
|
|
||||||
|
pl_request_id = promptlayer_api_request(
|
||||||
|
run_info.get("name"),
|
||||||
|
"langchain",
|
||||||
|
model_input,
|
||||||
|
model_params,
|
||||||
|
self.pl_tags,
|
||||||
|
model_response,
|
||||||
|
run_info.get("request_start_time"),
|
||||||
|
run_info.get("request_end_time"),
|
||||||
|
get_api_key(),
|
||||||
|
return_pl_id=bool(self.pl_id_callback is not None),
|
||||||
|
metadata={
|
||||||
|
"_langchain_run_id": str(run_id),
|
||||||
|
"_langchain_parent_run_id": str(parent_run_id),
|
||||||
|
"_langchain_tags": str(run_info.get("tags", [])),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.pl_id_callback:
|
||||||
|
self.pl_id_callback(pl_request_id)
|
||||||
|
|
||||||
|
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
|
||||||
|
if isinstance(message, HumanMessage):
|
||||||
|
message_dict = {"role": "user", "content": message.content}
|
||||||
|
elif isinstance(message, AIMessage):
|
||||||
|
message_dict = {"role": "assistant", "content": message.content}
|
||||||
|
elif isinstance(message, SystemMessage):
|
||||||
|
message_dict = {"role": "system", "content": message.content}
|
||||||
|
elif isinstance(message, ChatMessage):
|
||||||
|
message_dict = {"role": message.role, "content": message.content}
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Got unknown type {message}")
|
||||||
|
if "name" in message.additional_kwargs:
|
||||||
|
message_dict["name"] = message.additional_kwargs["name"]
|
||||||
|
return message_dict
|
||||||
|
|
||||||
|
def _create_message_dicts(
|
||||||
|
self, messages: List[BaseMessage]
|
||||||
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||||
|
params: Dict[str, Any] = {}
|
||||||
|
message_dicts = [self._convert_message_to_dict(m) for m in messages]
|
||||||
|
return message_dicts, params
|
Loading…
Reference in New Issue
Block a user