mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-02 01:23:07 +00:00
Update propositional-retrieval template (#14766)
More descriptive name. Add parser in ingest. Update image link
This commit is contained in:
parent
4855964332
commit
65091ebe50
@ -1,8 +1,8 @@
|
||||
# rag-chroma-dense-retrieval
|
||||
# propositional-retrieval
|
||||
|
||||
This template demonstrates the multi-vector indexing strategy proposed by Chen, et. al.'s [Dense X Retrieval: What Retrieval Granularity Should We Use?](https://arxiv.org/abs/2312.06648). The prompt, which you can [try out on the hub](https://smith.langchain.com/hub/wfh/proposal-indexing), directs an LLM to generate de-contextualized "propositions" which can be vectorized to increase the retrieval accuracy. You can see the full definition in `proposal_chain.py`.
|
||||
|
||||

|
||||

|
||||
|
||||
## Storage
|
||||
|
||||
@ -18,7 +18,7 @@ Create the index by running the following:
|
||||
|
||||
```python
|
||||
poetry install
|
||||
poetry run python rag_chroma_dense_retrieval/ingest.py
|
||||
poetry run python propositional_retrieval/ingest.py
|
||||
```
|
||||
|
||||
## Usage
|
||||
@ -32,21 +32,21 @@ pip install -U langchain-cli
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package rag-chroma-dense-retrieval
|
||||
langchain app new my-app --package propositional-retrieval
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add rag-chroma-dense-retrieval
|
||||
langchain app add propositional-retrieval
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
|
||||
```python
|
||||
from rag_chroma_dense_retrieval import chain
|
||||
from propositional_retrieval import chain
|
||||
|
||||
add_routes(app, chain, path="/rag-chroma-dense-retrieval")
|
||||
add_routes(app, chain, path="/propositional-retrieval")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
@ -70,12 +70,12 @@ This will start the FastAPI app with a server is running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||
We can access the playground at [http://127.0.0.1:8000/rag-chroma-dense-retrieval/playground](http://127.0.0.1:8000/rag-chroma-dense-retrieval/playground)
|
||||
We can access the playground at [http://127.0.0.1:8000/propositional-retrieval/playground](http://127.0.0.1:8000/propositional-retrieval/playground)
|
||||
|
||||
We can access the template from code with:
|
||||
|
||||
```python
|
||||
from langserve.client import RemoteRunnable
|
||||
|
||||
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-dense-retrieval")
|
||||
runnable = RemoteRunnable("http://localhost:8000/propositional-retrieval")
|
||||
```
|
Before Width: | Height: | Size: 375 KiB After Width: | Height: | Size: 375 KiB |
@ -12,7 +12,7 @@
|
||||
"```\n",
|
||||
"from fastapi import FastAPI\n",
|
||||
"from langserve import add_routes\n",
|
||||
"from rag_chroma_dense_retrieval import chain\n",
|
||||
"from propositional_retrieval import chain\n",
|
||||
"\n",
|
||||
"app = FastAPI(\n",
|
||||
" title=\"LangChain Server\",\n",
|
||||
@ -20,7 +20,7 @@
|
||||
" description=\"Retriever and Generator for RAG Chroma Dense Retrieval\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"add_routes(app, chain, path=\"/rag-chroma-dense-retrieval\")\n",
|
||||
"add_routes(app, chain, path=\"/propositional-retrieval\")\n",
|
||||
"\n",
|
||||
"if __name__ == \"__main__\":\n",
|
||||
" import uvicorn\n",
|
||||
@ -39,7 +39,7 @@
|
||||
"source": [
|
||||
"from langserve.client import RemoteRunnable\n",
|
||||
"\n",
|
||||
"rag_app = RemoteRunnable(\"http://localhost:8001/rag-chroma-dense-retrieval\")\n",
|
||||
"rag_app = RemoteRunnable(\"http://localhost:8001/propositional-retrieval\")\n",
|
||||
"rag_app.invoke(\"How are transformers related to convolutional neural networks?\")"
|
||||
]
|
||||
}
|
@ -0,0 +1,4 @@
|
||||
from propositional_retrieval.chain import chain
|
||||
from propositional_retrieval.proposal_chain import proposition_chain
|
||||
|
||||
__all__ = ["chain", "proposition_chain"]
|
@ -5,8 +5,8 @@ from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
|
||||
from rag_chroma_dense_retrieval.constants import DOCSTORE_ID_KEY
|
||||
from rag_chroma_dense_retrieval.storage import get_multi_vector_retriever
|
||||
from propositional_retrieval.constants import DOCSTORE_ID_KEY
|
||||
from propositional_retrieval.storage import get_multi_vector_retriever
|
||||
|
||||
|
||||
def format_docs(docs: list) -> str:
|
@ -2,12 +2,13 @@ import logging
|
||||
import uuid
|
||||
from typing import Sequence
|
||||
|
||||
from bs4 import BeautifulSoup as Soup
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.runnables import Runnable
|
||||
|
||||
from rag_chroma_dense_retrieval.constants import DOCSTORE_ID_KEY
|
||||
from rag_chroma_dense_retrieval.proposal_chain import proposition_chain
|
||||
from rag_chroma_dense_retrieval.storage import get_multi_vector_retriever
|
||||
from propositional_retrieval.constants import DOCSTORE_ID_KEY
|
||||
from propositional_retrieval.proposal_chain import proposition_chain
|
||||
from propositional_retrieval.storage import get_multi_vector_retriever
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@ -48,7 +49,9 @@ def create_index(
|
||||
"""
|
||||
logger.info("Creating multi-vector retriever")
|
||||
retriever = get_multi_vector_retriever(docstore_id_key)
|
||||
propositions = indexer.batch([{"input": doc.page_content} for doc in docs])
|
||||
propositions = indexer.batch(
|
||||
[{"input": doc.page_content} for doc in docs], {"max_concurrency": 10}
|
||||
)
|
||||
|
||||
add_documents(
|
||||
retriever,
|
||||
@ -69,12 +72,15 @@ if __name__ == "__main__":
|
||||
|
||||
# The attention is all you need paper
|
||||
# Could add more parsing here, as it's very raw.
|
||||
loader = RecursiveUrlLoader("https://ar5iv.labs.arxiv.org/html/1706.03762")
|
||||
loader = RecursiveUrlLoader(
|
||||
"https://ar5iv.labs.arxiv.org/html/1706.03762",
|
||||
max_depth=2,
|
||||
extractor=lambda x: Soup(x, "html.parser").text,
|
||||
)
|
||||
data = loader.load()
|
||||
logger.info(f"Loaded {len(data)} documents")
|
||||
|
||||
# Split
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=8000, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
logger.info(f"Split into {len(all_splits)} documents")
|
@ -1,7 +1,7 @@
|
||||
[tool.poetry]
|
||||
name = "rag-chroma-dense-retrieval"
|
||||
name = "propositional-retrieval"
|
||||
version = "0.1.0"
|
||||
description = "Dense retrieval using vectorized propositions.s"
|
||||
description = "Dense retrieval using vectorized propositions."
|
||||
authors = [
|
||||
"William Fu-Hinthorn <will@langchain.dev>",
|
||||
]
|
@ -1,4 +0,0 @@
|
||||
from rag_chroma_dense_retrieval.chain import chain
|
||||
from rag_chroma_dense_retrieval.proposal_chain import proposition_chain
|
||||
|
||||
__all__ = ["chain", "proposition_chain"]
|
Loading…
Reference in New Issue
Block a user