mirror of
https://github.com/hwchase17/langchain.git
synced 2025-10-21 09:10:42 +00:00
openai[patch]: accept json schema response format directly (#27623)
fix #25460 --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -1458,7 +1458,6 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
"schema must be specified when method is not 'json_mode'. "
|
||||
"Received None."
|
||||
)
|
||||
strict = strict if strict is not None else True
|
||||
response_format = _convert_to_openai_response_format(schema, strict=strict)
|
||||
llm = self.bind(response_format=response_format)
|
||||
if is_pydantic_schema:
|
||||
@@ -2139,14 +2138,32 @@ def _resize(width: int, height: int) -> Tuple[int, int]:
|
||||
|
||||
|
||||
def _convert_to_openai_response_format(
|
||||
schema: Union[Dict[str, Any], Type], strict: bool
|
||||
schema: Union[Dict[str, Any], Type], *, strict: Optional[bool] = None
|
||||
) -> Union[Dict, TypeBaseModel]:
|
||||
if isinstance(schema, type) and is_basemodel_subclass(schema):
|
||||
return schema
|
||||
|
||||
if "json_schema" in schema and schema.get("type") == "json_schema":
|
||||
response_format = schema
|
||||
elif "name" in schema and "schema" in schema:
|
||||
response_format = {"type": "json_schema", "json_schema": schema}
|
||||
else:
|
||||
strict = strict if strict is not None else True
|
||||
function = convert_to_openai_function(schema, strict=strict)
|
||||
function["schema"] = function.pop("parameters")
|
||||
return {"type": "json_schema", "json_schema": function}
|
||||
response_format = {"type": "json_schema", "json_schema": function}
|
||||
|
||||
if strict is not None and strict is not response_format["json_schema"].get(
|
||||
"strict"
|
||||
):
|
||||
msg = (
|
||||
f"Output schema already has 'strict' value set to "
|
||||
f"{schema['json_schema']['strict']} but 'strict' also passed in to "
|
||||
f"with_structured_output as {strict}. Please make sure that "
|
||||
f"'strict' is only specified in one place."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
return response_format
|
||||
|
||||
|
||||
@chain
|
||||
|
@@ -23,6 +23,7 @@ from langchain_openai import ChatOpenAI
|
||||
from langchain_openai.chat_models.base import (
|
||||
_convert_dict_to_message,
|
||||
_convert_message_to_dict,
|
||||
_convert_to_openai_response_format,
|
||||
_create_usage_metadata,
|
||||
_format_message_content,
|
||||
)
|
||||
@@ -761,3 +762,46 @@ def test__create_usage_metadata() -> None:
|
||||
input_token_details={},
|
||||
output_token_details={},
|
||||
)
|
||||
|
||||
|
||||
def test__convert_to_openai_response_format() -> None:
|
||||
# Test response formats that aren't tool-like.
|
||||
response_format: dict = {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "math_reasoning",
|
||||
"schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"steps": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"explanation": {"type": "string"},
|
||||
"output": {"type": "string"},
|
||||
},
|
||||
"required": ["explanation", "output"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
},
|
||||
"final_answer": {"type": "string"},
|
||||
},
|
||||
"required": ["steps", "final_answer"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
"strict": True,
|
||||
},
|
||||
}
|
||||
|
||||
actual = _convert_to_openai_response_format(response_format)
|
||||
assert actual == response_format
|
||||
|
||||
actual = _convert_to_openai_response_format(response_format["json_schema"])
|
||||
assert actual == response_format
|
||||
|
||||
actual = _convert_to_openai_response_format(response_format, strict=True)
|
||||
assert actual == response_format
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
_convert_to_openai_response_format(response_format, strict=False)
|
||||
|
Reference in New Issue
Block a user