mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-15 22:44:36 +00:00
New LLM integration: Ctranslate2 (#10400)
## Description: I've integrated CTranslate2 with LangChain. CTranlate2 is a recently popular library for efficient inference with Transformer models that compares favorably to alternatives such as HF Text Generation Inference and vLLM in [benchmarks](https://hamel.dev/notes/llm/inference/03_inference.html).
This commit is contained in:
@@ -37,6 +37,7 @@ from langchain.llms.chatglm import ChatGLM
|
||||
from langchain.llms.clarifai import Clarifai
|
||||
from langchain.llms.cohere import Cohere
|
||||
from langchain.llms.ctransformers import CTransformers
|
||||
from langchain.llms.ctranslate2 import CTranslate2
|
||||
from langchain.llms.databricks import Databricks
|
||||
from langchain.llms.deepinfra import DeepInfra
|
||||
from langchain.llms.deepsparse import DeepSparse
|
||||
@@ -100,6 +101,7 @@ __all__ = [
|
||||
"Beam",
|
||||
"Bedrock",
|
||||
"CTransformers",
|
||||
"CTranslate2",
|
||||
"CerebriumAI",
|
||||
"ChatGLM",
|
||||
"Clarifai",
|
||||
@@ -178,6 +180,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
||||
"clarifai": Clarifai,
|
||||
"cohere": Cohere,
|
||||
"ctransformers": CTransformers,
|
||||
"ctranslate2": CTranslate2,
|
||||
"databricks": Databricks,
|
||||
"deepinfra": DeepInfra,
|
||||
"deepsparse": DeepSparse,
|
||||
|
128
libs/langchain/langchain/llms/ctranslate2.py
Normal file
128
libs/langchain/langchain/llms/ctranslate2.py
Normal file
@@ -0,0 +1,128 @@
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.pydantic_v1 import Field, root_validator
|
||||
from langchain.schema.output import Generation, LLMResult
|
||||
|
||||
|
||||
class CTranslate2(BaseLLM):
|
||||
"""CTranslate2 language model."""
|
||||
|
||||
model_path: str = ""
|
||||
"""Path to the CTranslate2 model directory."""
|
||||
|
||||
tokenizer_name: str = ""
|
||||
"""Name of the original Hugging Face model needed to load the proper tokenizer."""
|
||||
|
||||
device: str = "cpu"
|
||||
"""Device to use (possible values are: cpu, cuda, auto)."""
|
||||
|
||||
device_index: Union[int, List[int]] = 0
|
||||
"""Device IDs where to place this generator on."""
|
||||
|
||||
compute_type: Union[str, Dict[str, str]] = "default"
|
||||
"""
|
||||
Model computation type or a dictionary mapping a device name to the computation type
|
||||
(possible values are: default, auto, int8, int8_float32, int8_float16,
|
||||
int8_bfloat16, int16, float16, bfloat16, float32).
|
||||
"""
|
||||
|
||||
max_length: int = 512
|
||||
"""Maximum generation length."""
|
||||
|
||||
sampling_topk: int = 1
|
||||
"""Randomly sample predictions from the top K candidates."""
|
||||
|
||||
sampling_topp: float = 1
|
||||
"""Keep the most probable tokens whose cumulative probability exceeds this value."""
|
||||
|
||||
sampling_temperature: float = 1
|
||||
"""Sampling temperature to generate more random samples."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
|
||||
tokenizer: Any #: :meta private:
|
||||
|
||||
ctranslate2_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""
|
||||
Holds any model parameters valid for `ctranslate2.Generator` call not
|
||||
explicitly specified.
|
||||
"""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that python package exists in environment."""
|
||||
|
||||
try:
|
||||
import ctranslate2
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import ctranslate2 python package. "
|
||||
"Please install it with `pip install ctranslate2`."
|
||||
)
|
||||
|
||||
try:
|
||||
import transformers
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import transformers python package. "
|
||||
"Please install it with `pip install transformers`."
|
||||
)
|
||||
|
||||
values["client"] = ctranslate2.Generator(
|
||||
model_path=values["model_path"],
|
||||
device=values["device"],
|
||||
device_index=values["device_index"],
|
||||
compute_type=values["compute_type"],
|
||||
**values["ctranslate2_kwargs"],
|
||||
)
|
||||
|
||||
values["tokenizer"] = transformers.AutoTokenizer.from_pretrained(
|
||||
values["tokenizer_name"]
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters."""
|
||||
return {
|
||||
"max_length": self.max_length,
|
||||
"sampling_topk": self.sampling_topk,
|
||||
"sampling_topp": self.sampling_topp,
|
||||
"sampling_temperature": self.sampling_temperature,
|
||||
}
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
# build sampling parameters
|
||||
params = {**self._default_params, **kwargs}
|
||||
|
||||
# call the model
|
||||
encoded_prompts = self.tokenizer(prompts)["input_ids"]
|
||||
tokenized_prompts = [
|
||||
self.tokenizer.convert_ids_to_tokens(encoded_prompt)
|
||||
for encoded_prompt in encoded_prompts
|
||||
]
|
||||
|
||||
results = self.client.generate_batch(tokenized_prompts, **params)
|
||||
|
||||
sequences = [result.sequences_ids[0] for result in results]
|
||||
decoded_sequences = [self.tokenizer.decode(seq) for seq in sequences]
|
||||
|
||||
generations = []
|
||||
for text in decoded_sequences:
|
||||
generations.append([Generation(text=text)])
|
||||
|
||||
return LLMResult(generations=generations)
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "ctranslate2"
|
Reference in New Issue
Block a user