mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-01 02:43:37 +00:00
embaas title
This commit is contained in:
parent
7a5e36f3f5
commit
681ba6d520
@ -2,142 +2,127 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Embaas\n",
|
||||
"\n",
|
||||
"[embaas](https://embaas.io) is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a [variety of pre-trained models](https://embaas.io/docs/models/embeddings).\n",
|
||||
"\n",
|
||||
"In this tutorial, we will show you how to use the embaas Embeddings API to generate embeddings for a given text.\n",
|
||||
"\n",
|
||||
"### Prerequisites\n",
|
||||
"Create your free embaas account at [https://embaas.io/register](https://embaas.io/register) and generate an [API key](https://embaas.io/dashboard/api-keys)."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set API key\n",
|
||||
"embaas_api_key = \"YOUR_API_KEY\"\n",
|
||||
"# or set environment variable\n",
|
||||
"os.environ[\"EMBAAS_API_KEY\"] = \"YOUR_API_KEY\""
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import EmbaasEmbeddings"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = EmbaasEmbeddings()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-10T11:17:55.940265Z",
|
||||
"start_time": "2023-06-10T11:17:55.938517Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create embeddings for a single document\n",
|
||||
"doc_text = \"This is a test document.\"\n",
|
||||
"doc_text_embedding = embeddings.embed_query(doc_text)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"start_time": "2023-06-10T11:17:55.938517Z",
|
||||
"end_time": "2023-06-10T11:17:55.940265Z"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Print created embedding\n",
|
||||
"print(doc_text_embedding)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-10T11:19:25.237161Z",
|
||||
"start_time": "2023-06-10T11:19:25.235320Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create embeddings for multiple documents\n",
|
||||
"doc_texts = [\"This is a test document.\", \"This is another test document.\"]\n",
|
||||
"doc_texts_embeddings = embeddings.embed_documents(doc_texts)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"start_time": "2023-06-10T11:19:25.235320Z",
|
||||
"end_time": "2023-06-10T11:19:25.237161Z"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Print created embeddings\n",
|
||||
"for i, doc_text_embedding in enumerate(doc_texts_embeddings):\n",
|
||||
" print(f\"Embedding for document {i + 1}: {doc_text_embedding}\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-06-10T11:22:26.139769Z",
|
||||
"start_time": "2023-06-10T11:22:26.138357Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using a different model and/or custom instruction\n",
|
||||
"embeddings = EmbaasEmbeddings(model=\"instructor-large\", instruction=\"Represent the Wikipedia document for retrieval\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"start_time": "2023-06-10T11:22:26.138357Z",
|
||||
"end_time": "2023-06-10T11:22:26.139769Z"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For more detailed information about the embaas Embeddings API, please refer to [the official embaas API documentation](https://embaas.io/api-reference)."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@ -155,5 +140,5 @@
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user