partners/openai: fix depracation errors of pydantic's .dict() function (reopen #16629) (#17404)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Savvas Mantzouranidis
2024-02-21 00:57:34 +00:00
committed by GitHub
parent bebe401b1a
commit 691ff67096
4 changed files with 19 additions and 15 deletions

View File

@@ -324,7 +324,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
input=tokens[i : i + _chunk_size], **self._invocation_params
)
if not isinstance(response, dict):
response = response.dict()
response = response.model_dump()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
@@ -343,7 +343,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
input="", **self._invocation_params
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average_embedded = average_embedded.model_dump()
average = average_embedded["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
@@ -436,7 +436,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
)
if not isinstance(response, dict):
response = response.dict()
response = response.model_dump()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
@@ -453,7 +453,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
input="", **self._invocation_params
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average_embedded = average_embedded.model_dump()
average = average_embedded["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])