mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-19 11:08:55 +00:00
community: Add Laser Embedding Integration (#18111)
- **Description:** Added Integration with Meta AI's LASER Language-Agnostic SEntence Representations embedding library, which supports multilingual embedding for any of the languages listed here: https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200, including several low resource languages - **Dependencies:** laser_encoders
This commit is contained in:
parent
257879e98d
commit
69344a0661
149
docs/docs/integrations/text_embedding/laser.ipynb
Normal file
149
docs/docs/integrations/text_embedding/laser.ipynb
Normal file
@ -0,0 +1,149 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "900fbd04-f6aa-4813-868f-1c54e3265385",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# LASER Language-Agnostic SEntence Representations Embeddings by Meta AI\n",
|
||||
"\n",
|
||||
">[LASER](https://github.com/facebookresearch/LASER/) is a Python library developed by the Meta AI Research team and used for creating multilingual sentence embeddings for over 147 languages as of 2/25/2024 \n",
|
||||
">- List of supported languages at https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "2a773d8d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dependencies\n",
|
||||
"\n",
|
||||
"To use LaserEmbed with LangChain, install the `laser_encoders` Python package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "91ea14ce-831d-409a-a88f-30353acdabd1",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install laser_encoders"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "426f1156",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "3f5dc9d7-65e3-4b5b-9086-3327d016cfe0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.laser import LaserEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8c77b0bb-2613-4167-a204-14d424b59105",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiating Laser\n",
|
||||
" \n",
|
||||
"### Parameters\n",
|
||||
"- `lang: Optional[str]`\n",
|
||||
" >If empty will default\n",
|
||||
" to using a multilingual LASER encoder model (called \"laser2\").\n",
|
||||
" You can find the list of supported languages and lang_codes [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200)\n",
|
||||
" and [here](https://github.com/facebookresearch/LASER/blob/main/laser_encoders/language_list.py)\n",
|
||||
"."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6fb585dd",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Ex Instantiationz\n",
|
||||
"embeddings = LaserEmbeddings(lang=\"eng_Latn\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "119fbaad-9442-4fff-8214-c5f597bc8e77",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"### Generating document embeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62920051-cbd2-460d-ba24-0424c1ed395d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"document_embeddings = embeddings.embed_documents(\n",
|
||||
" [\"This is a sentence\", \"This is some other sentence\"]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7fd10d96-baee-468f-a532-b70b16b78d1f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generating query embeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9f793bb6-609a-4a4a-a5c7-8e8597228915",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_embeddings = embeddings.embed_query(\"This is a query\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -55,6 +55,7 @@ from langchain_community.embeddings.infinity_local import InfinityEmbeddingsLoca
|
||||
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
|
||||
from langchain_community.embeddings.jina import JinaEmbeddings
|
||||
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
|
||||
from langchain_community.embeddings.laser import LaserEmbeddings
|
||||
from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
|
||||
from langchain_community.embeddings.llm_rails import LLMRailsEmbeddings
|
||||
from langchain_community.embeddings.localai import LocalAIEmbeddings
|
||||
@ -109,6 +110,7 @@ __all__ = [
|
||||
"InfinityEmbeddingsLocal",
|
||||
"GradientEmbeddings",
|
||||
"JinaEmbeddings",
|
||||
"LaserEmbeddings",
|
||||
"LlamaCppEmbeddings",
|
||||
"LLMRailsEmbeddings",
|
||||
"HuggingFaceHubEmbeddings",
|
||||
|
89
libs/community/langchain_community/embeddings/laser.py
Normal file
89
libs/community/langchain_community/embeddings/laser.py
Normal file
@ -0,0 +1,89 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
|
||||
LASER_MULTILINGUAL_MODEL: str = "laser2"
|
||||
|
||||
|
||||
class LaserEmbeddings(BaseModel, Embeddings):
|
||||
"""LASER Language-Agnostic SEntence Representations.
|
||||
LASER is a Python library developed by the Meta AI Research team
|
||||
and used for creating multilingual sentence embeddings for over 147 languages
|
||||
as of 2/25/2024
|
||||
See more documentation at:
|
||||
* https://github.com/facebookresearch/LASER/
|
||||
* https://github.com/facebookresearch/LASER/tree/main/laser_encoders
|
||||
* https://arxiv.org/abs/2205.12654
|
||||
|
||||
To use this class, you must install the `laser_encoders` Python package.
|
||||
|
||||
`pip install laser_encoders`
|
||||
Example:
|
||||
from laser_encoders import LaserEncoderPipeline
|
||||
encoder = LaserEncoderPipeline(lang="eng_Latn")
|
||||
embeddings = encoder.encode_sentences(["Hello", "World"])
|
||||
"""
|
||||
|
||||
lang: Optional[str]
|
||||
"""The language or language code you'd like to use
|
||||
If empty, this implementation will default
|
||||
to using a multilingual earlier LASER encoder model (called laser2)
|
||||
Find the list of supported languages at
|
||||
https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200
|
||||
"""
|
||||
|
||||
_encoder_pipeline: Any # : :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that laser_encoders has been installed."""
|
||||
try:
|
||||
from laser_encoders import LaserEncoderPipeline
|
||||
|
||||
lang = values.get("lang")
|
||||
if lang:
|
||||
encoder_pipeline = LaserEncoderPipeline(lang=lang)
|
||||
else:
|
||||
encoder_pipeline = LaserEncoderPipeline(laser=LASER_MULTILINGUAL_MODEL)
|
||||
values["_encoder_pipeline"] = encoder_pipeline
|
||||
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Could not import 'laser_encoders' Python package. "
|
||||
"Please install it with `pip install laser_encoders`."
|
||||
) from e
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Generate embeddings for documents using LASER.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings: np.ndarray
|
||||
embeddings = self._encoder_pipeline.encode_sentences(texts)
|
||||
|
||||
return embeddings.tolist()
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Generate single query text embeddings using LASER.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
query_embeddings: np.ndarray
|
||||
query_embeddings = self._encoder_pipeline.encode_sentences([text])
|
||||
return query_embeddings.tolist()[0]
|
@ -0,0 +1,29 @@
|
||||
"""Test LASER embeddings."""
|
||||
import pytest
|
||||
|
||||
from langchain_community.embeddings.laser import LaserEmbeddings
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning:")
|
||||
@pytest.mark.parametrize("lang", [None, "lus_Latn", "english"])
|
||||
def test_laser_embedding_documents(lang: str) -> None:
|
||||
"""Test laser embeddings for documents.
|
||||
User warning is returned by LASER library implementation
|
||||
so will ignore in testing."""
|
||||
documents = ["hello", "world"]
|
||||
embedding = LaserEmbeddings(lang=lang)
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2 # type: ignore[arg-type]
|
||||
assert len(output[0]) == 1024 # type: ignore[index]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning:")
|
||||
@pytest.mark.parametrize("lang", [None, "lus_Latn", "english"])
|
||||
def test_laser_embedding_query(lang: str) -> None:
|
||||
"""Test laser embeddings for query.
|
||||
User warning is returned by LASER library implementation
|
||||
so will ignore in testing."""
|
||||
query = "hello world"
|
||||
embedding = LaserEmbeddings(lang=lang)
|
||||
output = embedding.embed_query(query)
|
||||
assert len(output) == 1024
|
@ -15,6 +15,7 @@ EXPECTED_ALL = [
|
||||
"InfinityEmbeddingsLocal",
|
||||
"GradientEmbeddings",
|
||||
"JinaEmbeddings",
|
||||
"LaserEmbeddings",
|
||||
"LlamaCppEmbeddings",
|
||||
"LLMRailsEmbeddings",
|
||||
"HuggingFaceHubEmbeddings",
|
||||
|
Loading…
Reference in New Issue
Block a user