diff --git a/docs/docs/additional_resources/arxiv_references.mdx b/docs/docs/additional_resources/arxiv_references.mdx index 3e258a4a821..8859bf3f3b8 100644 --- a/docs/docs/additional_resources/arxiv_references.mdx +++ b/docs/docs/additional_resources/arxiv_references.mdx @@ -1,54 +1,146 @@ # arXiv LangChain implements the latest research in the field of Natural Language Processing. -This page contains `arXiv` papers referenced in the LangChain Documentation and API Reference. +This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference, +and Templates. ## Summary -| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation and API Reference | -|------------------|---------|-------------------|-------------------------| -| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023-07-06 | `Docs:` [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder) +| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation| +|------------------|---------|-------------------|------------------------| +| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval) +| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki) +| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting) +| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read) | `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot) -| `2305.06983v2` [Active Retrieval Augmented Generation](http://arxiv.org/abs/2305.06983v2) | Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al. | 2023-05-11 | `Docs:` [docs/modules/chains](https://python.langchain.com/docs/modules/chains) | `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents) | `2303.08774v6` [GPT-4 Technical Report](http://arxiv.org/abs/2303.08774v6) | OpenAI, Josh Achiam, Steven Adler, et al. | 2023-03-15 | `Docs:` [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas) -| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI) -| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `Docs:` [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde), `API:` [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder) -| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022-12-15 | `Docs:` [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain) +| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) +| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde) | `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal) | `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core.example_selectors...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector) | `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain) | `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake) | `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community.embeddings...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings) -| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `Docs:` [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart), `API:` [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) +| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) | `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) | `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip) | `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) | `1908.10084v1` [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084v1) | Nils Reimers, Iryna Gurevych | 2019-08-27 | `Docs:` [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers) -## Lost in the Middle: How Language Models Use Long Contexts +## Dense X Retrieval: What Retrieval Granularity Should We Use? -- **arXiv id:** 2307.03172v3 -- **Title:** Lost in the Middle: How Language Models Use Long Contexts -- **Authors:** Nelson F. Liu, Kevin Lin, John Hewitt, et al. -- **Published Date:** 2023-07-06 -- **URL:** http://arxiv.org/abs/2307.03172v3 -- **LangChain Documentation:** [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder) +- **arXiv id:** 2312.06648v2 +- **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use? +- **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al. +- **Published Date:** 2023-12-11 +- **URL:** http://arxiv.org/abs/2312.06648v2 +- **LangChain:** + - **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval) -**Abstract:** While recent language models have the ability to take long contexts as input, -relatively little is known about how well they use longer context. We analyze -the performance of language models on two tasks that require identifying -relevant information in their input contexts: multi-document question answering -and key-value retrieval. We find that performance can degrade significantly -when changing the position of relevant information, indicating that current -language models do not robustly make use of information in long input contexts. -In particular, we observe that performance is often highest when relevant -information occurs at the beginning or end of the input context, and -significantly degrades when models must access relevant information in the -middle of long contexts, even for explicitly long-context models. Our analysis -provides a better understanding of how language models use their input context -and provides new evaluation protocols for future long-context language models. +**Abstract:** Dense retrieval has become a prominent method to obtain relevant context or +world knowledge in open-domain NLP tasks. When we use a learned dense retriever +on a retrieval corpus at inference time, an often-overlooked design choice is +the retrieval unit in which the corpus is indexed, e.g. document, passage, or +sentence. We discover that the retrieval unit choice significantly impacts the +performance of both retrieval and downstream tasks. Distinct from the typical +approach of using passages or sentences, we introduce a novel retrieval unit, +proposition, for dense retrieval. Propositions are defined as atomic +expressions within text, each encapsulating a distinct factoid and presented in +a concise, self-contained natural language format. We conduct an empirical +comparison of different retrieval granularity. Our results reveal that +proposition-based retrieval significantly outperforms traditional passage or +sentence-based methods in dense retrieval. Moreover, retrieval by proposition +also enhances the performance of downstream QA tasks, since the retrieved texts +are more condensed with question-relevant information, reducing the need for +lengthy input tokens and minimizing the inclusion of extraneous, irrelevant +information. + +## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models + +- **arXiv id:** 2311.09210v1 +- **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models +- **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. +- **Published Date:** 2023-11-15 +- **URL:** http://arxiv.org/abs/2311.09210v1 +- **LangChain:** + + - **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki) + +**Abstract:** Retrieval-augmented language models (RALMs) represent a substantial +advancement in the capabilities of large language models, notably in reducing +factual hallucination by leveraging external knowledge sources. However, the +reliability of the retrieved information is not always guaranteed. The +retrieval of irrelevant data can lead to misguided responses, and potentially +causing the model to overlook its inherent knowledge, even when it possesses +adequate information to address the query. Moreover, standard RALMs often +struggle to assess whether they possess adequate knowledge, both intrinsic and +retrieved, to provide an accurate answer. In situations where knowledge is +lacking, these systems should ideally respond with "unknown" when the answer is +unattainable. In response to these challenges, we introduces Chain-of-Noting +(CoN), a novel approach aimed at improving the robustness of RALMs in facing +noisy, irrelevant documents and in handling unknown scenarios. The core idea of +CoN is to generate sequential reading notes for retrieved documents, enabling a +thorough evaluation of their relevance to the given question and integrating +this information to formulate the final answer. We employed ChatGPT to create +training data for CoN, which was subsequently trained on an LLaMa-2 7B model. +Our experiments across four open-domain QA benchmarks show that RALMs equipped +with CoN significantly outperform standard RALMs. Notably, CoN achieves an +average improvement of +7.9 in EM score given entirely noisy retrieved +documents and +10.5 in rejection rates for real-time questions that fall +outside the pre-training knowledge scope. + +## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models + +- **arXiv id:** 2310.06117v2 +- **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models +- **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. +- **Published Date:** 2023-10-09 +- **URL:** http://arxiv.org/abs/2310.06117v2 +- **LangChain:** + + - **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting) + +**Abstract:** We present Step-Back Prompting, a simple prompting technique that enables +LLMs to do abstractions to derive high-level concepts and first principles from +instances containing specific details. Using the concepts and principles to +guide reasoning, LLMs significantly improve their abilities in following a +correct reasoning path towards the solution. We conduct experiments of +Step-Back Prompting with PaLM-2L, GPT-4 and Llama2-70B models, and observe +substantial performance gains on various challenging reasoning-intensive tasks +including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back +Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7% +and 11% respectively, TimeQA by 27%, and MuSiQue by 7%. + +## Query Rewriting for Retrieval-Augmented Large Language Models + +- **arXiv id:** 2305.14283v3 +- **Title:** Query Rewriting for Retrieval-Augmented Large Language Models +- **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al. +- **Published Date:** 2023-05-23 +- **URL:** http://arxiv.org/abs/2305.14283v3 +- **LangChain:** + + - **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read) + +**Abstract:** Large Language Models (LLMs) play powerful, black-box readers in the +retrieve-then-read pipeline, making remarkable progress in knowledge-intensive +tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of +the previous retrieve-then-read for the retrieval-augmented LLMs from the +perspective of the query rewriting. Unlike prior studies focusing on adapting +either the retriever or the reader, our approach pays attention to the +adaptation of the search query itself, for there is inevitably a gap between +the input text and the needed knowledge in retrieval. We first prompt an LLM to +generate the query, then use a web search engine to retrieve contexts. +Furthermore, to better align the query to the frozen modules, we propose a +trainable scheme for our pipeline. A small language model is adopted as a +trainable rewriter to cater to the black-box LLM reader. The rewriter is +trained using the feedback of the LLM reader by reinforcement learning. +Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice +QA. Experiments results show consistent performance improvement, indicating +that our framework is proven effective and scalable, and brings a new framework +for retrieval-augmented LLM. ## Large Language Model Guided Tree-of-Thought @@ -57,8 +149,9 @@ and provides new evaluation protocols for future long-context language models. - **Authors:** Jieyi Long - **Published Date:** 2023-05-15 - **URL:** http://arxiv.org/abs/2305.08291v1 +- **LangChain:** -- **LangChain API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot) + - **API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot) **Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel approach aimed at improving the problem-solving capabilities of auto-regressive @@ -78,35 +171,6 @@ significantly increase the success rate of Sudoku puzzle solving. Our implementation of the ToT-based Sudoku solver is available on GitHub: \url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}. -## Active Retrieval Augmented Generation - -- **arXiv id:** 2305.06983v2 -- **Title:** Active Retrieval Augmented Generation -- **Authors:** Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al. -- **Published Date:** 2023-05-11 -- **URL:** http://arxiv.org/abs/2305.06983v2 -- **LangChain Documentation:** [docs/modules/chains](https://python.langchain.com/docs/modules/chains) - - -**Abstract:** Despite the remarkable ability of large language models (LMs) to comprehend -and generate language, they have a tendency to hallucinate and create factually -inaccurate output. Augmenting LMs by retrieving information from external -knowledge resources is one promising solution. Most existing retrieval -augmented LMs employ a retrieve-and-generate setup that only retrieves -information once based on the input. This is limiting, however, in more general -scenarios involving generation of long texts, where continually gathering -information throughout generation is essential. In this work, we provide a -generalized view of active retrieval augmented generation, methods that -actively decide when and what to retrieve across the course of the generation. -We propose Forward-Looking Active REtrieval augmented generation (FLARE), a -generic method which iteratively uses a prediction of the upcoming sentence to -anticipate future content, which is then utilized as a query to retrieve -relevant documents to regenerate the sentence if it contains low-confidence -tokens. We test FLARE along with baselines comprehensively over 4 long-form -knowledge-intensive generation tasks/datasets. FLARE achieves superior or -competitive performance on all tasks, demonstrating the effectiveness of our -method. Code and datasets are available at https://github.com/jzbjyb/FLARE. - ## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face - **arXiv id:** 2303.17580v4 @@ -114,8 +178,9 @@ method. Code and datasets are available at https://github.com/jzbjyb/FLARE. - **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al. - **Published Date:** 2023-03-30 - **URL:** http://arxiv.org/abs/2303.17580v4 +- **LangChain:** -- **LangChain API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents) + - **API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents) **Abstract:** Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are numerous AI models @@ -144,8 +209,9 @@ realization of artificial general intelligence. - **Authors:** OpenAI, Josh Achiam, Steven Adler, et al. - **Published Date:** 2023-03-15 - **URL:** http://arxiv.org/abs/2303.08774v6 -- **LangChain Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas) +- **LangChain:** + - **Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas) **Abstract:** We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than @@ -167,8 +233,9 @@ more than 1/1,000th the compute of GPT-4. - **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. - **Published Date:** 2023-01-24 - **URL:** http://arxiv.org/abs/2301.10226v4 +- **LangChain:** -- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI) + - **API Reference:** [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) **Abstract:** Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to @@ -191,8 +258,10 @@ family, and discuss robustness and security. - **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al. - **Published Date:** 2022-12-20 - **URL:** http://arxiv.org/abs/2212.10496v1 -- **LangChain Documentation:** [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde) -- **LangChain API Reference:** [langchain.chains.hyde.base.HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder) +- **LangChain:** + + - **API Reference:** [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder) + - **Template:** [hyde](https://python.langchain.com/docs/templates/hyde) **Abstract:** While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense @@ -212,35 +281,6 @@ state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja). -## Constitutional AI: Harmlessness from AI Feedback - -- **arXiv id:** 2212.08073v1 -- **Title:** Constitutional AI: Harmlessness from AI Feedback -- **Authors:** Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. -- **Published Date:** 2022-12-15 -- **URL:** http://arxiv.org/abs/2212.08073v1 -- **LangChain Documentation:** [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain) - - -**Abstract:** As AI systems become more capable, we would like to enlist their help to -supervise other AIs. We experiment with methods for training a harmless AI -assistant through self-improvement, without any human labels identifying -harmful outputs. The only human oversight is provided through a list of rules -or principles, and so we refer to the method as 'Constitutional AI'. The -process involves both a supervised learning and a reinforcement learning phase. -In the supervised phase we sample from an initial model, then generate -self-critiques and revisions, and then finetune the original model on revised -responses. In the RL phase, we sample from the finetuned model, use a model to -evaluate which of the two samples is better, and then train a preference model -from this dataset of AI preferences. We then train with RL using the preference -model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a -result we are able to train a harmless but non-evasive AI assistant that -engages with harmful queries by explaining its objections to them. Both the SL -and RL methods can leverage chain-of-thought style reasoning to improve the -human-judged performance and transparency of AI decision making. These methods -make it possible to control AI behavior more precisely and with far fewer human -labels. - ## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments - **arXiv id:** 2212.07425v3 @@ -248,8 +288,9 @@ labels. - **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. - **Published Date:** 2022-12-12 - **URL:** http://arxiv.org/abs/2212.07425v3 +- **LangChain:** -- **LangChain API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal) + - **API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal) **Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been amplified in the Internet era. Given the volume of data and the subtlety of @@ -280,8 +321,9 @@ further work on logical fallacy identification. - **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. - **Published Date:** 2022-11-25 - **URL:** http://arxiv.org/abs/2211.13892v2 +- **LangChain:** -- **LangChain API Reference:** [langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector) + - **API Reference:** [langchain_core.example_selectors...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector) **Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in learning from explanations in prompts, but there has been limited understanding @@ -307,8 +349,9 @@ performance across three real-world tasks on multiple LLMs. - **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al. - **Published Date:** 2022-11-18 - **URL:** http://arxiv.org/abs/2211.10435v2 +- **LangChain:** -- **LangChain API Reference:** [langchain_experimental.pal_chain.base.PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain) + - **API Reference:** [langchain_experimental.pal_chain...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain) **Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few @@ -340,8 +383,9 @@ publicly available at http://reasonwithpal.com/ . - **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. - **Published Date:** 2022-09-22 - **URL:** http://arxiv.org/abs/2209.10785v2 -- **LangChain Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake) +- **LangChain:** + - **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake) **Abstract:** Traditional data lakes provide critical data infrastructure for analytical workloads by enabling time travel, running SQL queries, ingesting data with @@ -367,8 +411,9 @@ TensorFlow, JAX, and integrate with numerous MLOps tools. - **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk - **Published Date:** 2022-05-25 - **URL:** http://arxiv.org/abs/2205.12654v1 +- **LangChain:** -- **LangChain API Reference:** [langchain_community.embeddings.laser.LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings) + - **API Reference:** [langchain_community.embeddings...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings) **Abstract:** Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource @@ -395,8 +440,9 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems. - **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau - **Published Date:** 2022-03-15 - **URL:** http://arxiv.org/abs/2204.00498v1 -- **LangChain Documentation:** [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart) -- **LangChain API Reference:** [langchain_community.utilities.sql_database.SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities.spark_sql.SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) +- **LangChain:** + + - **API Reference:** [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) **Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex language model. We find that, without any finetuning, Codex is a strong @@ -413,8 +459,9 @@ few-shot examples. - **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al. - **Published Date:** 2022-02-01 - **URL:** http://arxiv.org/abs/2202.00666v5 +- **LangChain:** -- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) + - **API Reference:** [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) **Abstract:** Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models @@ -444,8 +491,9 @@ reducing degenerate repetitions. - **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al. - **Published Date:** 2021-02-26 - **URL:** http://arxiv.org/abs/2103.00020v1 +- **LangChain:** -- **LangChain API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip) + - **API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip) **Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits @@ -475,8 +523,9 @@ https://github.com/OpenAI/CLIP. - **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. - **Published Date:** 2019-09-11 - **URL:** http://arxiv.org/abs/1909.05858v2 +- **LangChain:** -- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) + - **API Reference:** [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) **Abstract:** Large-scale language models show promising text generation capabilities, but users cannot easily control particular aspects of the generated text. We @@ -497,8 +546,9 @@ full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl. - **Authors:** Nils Reimers, Iryna Gurevych - **Published Date:** 2019-08-27 - **URL:** http://arxiv.org/abs/1908.10084v1 -- **LangChain Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers) +- **LangChain:** + - **Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers) **Abstract:** BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic diff --git a/docs/scripts/arxiv_references.py b/docs/scripts/arxiv_references.py index 55d9169d83f..76e22526c33 100644 --- a/docs/scripts/arxiv_references.py +++ b/docs/scripts/arxiv_references.py @@ -11,15 +11,14 @@ from typing import Any, Dict, List, Set from pydantic.v1 import BaseModel, root_validator -# TODO parse docstrings for arXiv references -# TODO Generate a page with a table of the references with correspondent modules/classes/functions. - logger = logging.getLogger(__name__) _ROOT_DIR = Path(os.path.abspath(__file__)).parents[2] DOCS_DIR = _ROOT_DIR / "docs" / "docs" CODE_DIR = _ROOT_DIR / "libs" +TEMPLATES_DIR = _ROOT_DIR / "templates" ARXIV_ID_PATTERN = r"https://arxiv\.org/(abs|pdf)/(\d+\.\d+)" +LANGCHAIN_PYTHON_URL = "python.langchain.com" @dataclass @@ -27,8 +26,9 @@ class ArxivPaper: """ArXiv paper information.""" arxiv_id: str - referencing_docs: list[str] # TODO: Add the referencing docs - referencing_api_refs: list[str] # TODO: Add the referencing docs + referencing_doc2url: dict[str, str] + referencing_api_ref2url: dict[str, str] + referencing_template2url: dict[str, str] title: str authors: list[str] abstract: str @@ -218,6 +218,35 @@ def search_code_for_arxiv_references(code_dir: Path) -> dict[str, set[str]]: return arxiv_id2module_name_and_members_reduced +def search_templates_for_arxiv_references(templates_dir: Path) -> dict[str, set[str]]: + arxiv_url_pattern = re.compile(ARXIV_ID_PATTERN) + # exclude_strings = {"file_path", "metadata", "link", "loader", "PyPDFLoader"} + + # loop all the Readme.md files since they are parsed into LangChain documentation + # exclude the Readme.md in the root folder + files = ( + p.resolve() + for p in Path(templates_dir).glob("**/*") + if p.name.lower() in {"readme.md"} and p.parent.name != "templates" + ) + arxiv_id2template_names: dict[str, set[str]] = {} + for file in files: + with open(file, "r", encoding="utf-8") as f: + lines = f.readlines() + for line in lines: + # if any(exclude_string in line for exclude_string in exclude_strings): + # continue + matches = arxiv_url_pattern.search(line) + if matches: + arxiv_id = matches.group(2) + template_name = file.parent.name + if arxiv_id not in arxiv_id2template_names: + arxiv_id2template_names[arxiv_id] = {template_name} + else: + arxiv_id2template_names[arxiv_id].add(template_name) + return arxiv_id2template_names + + def _get_doc_path(file_parts: tuple[str, ...], file_extension) -> str: """Get the relative path to the documentation page from the absolute path of the file. @@ -257,58 +286,70 @@ def _get_module_name(file_parts: tuple[str, ...]) -> str: def compound_urls( - arxiv_id2file_names: dict[str, set[str]], arxiv_id2code_urls: dict[str, set[str]] + arxiv_id2file_names: dict[str, set[str]], + arxiv_id2code_urls: dict[str, set[str]], + arxiv_id2templates: dict[str, set[str]], ) -> dict[str, dict[str, set[str]]]: - arxiv_id2urls = dict() - for arxiv_id, code_urls in arxiv_id2code_urls.items(): - arxiv_id2urls[arxiv_id] = {"api": code_urls} - # intersection of the two sets - if arxiv_id in arxiv_id2file_names: - arxiv_id2urls[arxiv_id]["docs"] = arxiv_id2file_names[arxiv_id] + # format urls and verify that the urls are correct + arxiv_id2file_names_new = {} for arxiv_id, file_names in arxiv_id2file_names.items(): - if arxiv_id not in arxiv_id2code_urls: - arxiv_id2urls[arxiv_id] = {"docs": file_names} - # reverse sort by the arxiv_id (the newest papers first) - ret = dict(sorted(arxiv_id2urls.items(), key=lambda item: item[0], reverse=True)) - return ret + key2urls = { + key: _format_doc_url(key) + for key in file_names + if _is_url_ok(_format_doc_url(key)) + } + if key2urls: + arxiv_id2file_names_new[arxiv_id] = key2urls + arxiv_id2code_urls_new = {} + for arxiv_id, code_urls in arxiv_id2code_urls.items(): + key2urls = { + key: _format_api_ref_url(key) + for key in code_urls + if _is_url_ok(_format_api_ref_url(key)) + } + if key2urls: + arxiv_id2code_urls_new[arxiv_id] = key2urls -def _format_doc_link(doc_paths: list[str]) -> list[str]: - return [ - f"[{doc_path}](https://python.langchain.com/{doc_path})" - for doc_path in doc_paths - ] + arxiv_id2templates_new = {} + for arxiv_id, templates in arxiv_id2templates.items(): + key2urls = { + key: _format_template_url(key) + for key in templates + if _is_url_ok(_format_template_url(key)) + } + if key2urls: + arxiv_id2templates_new[arxiv_id] = key2urls - -def _format_api_ref_link( - doc_paths: list[str], compact: bool = False -) -> list[str]: # TODO - # agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction - ret = [] - for doc_path in doc_paths: - module = doc_path.split("#")[1].replace("module-", "") - if compact and module.count(".") > 2: - # langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI - # -> langchain_community.llms...OCIModelDeploymentTGI - module_parts = module.split(".") - module = f"{module_parts[0]}.{module_parts[1]}...{module_parts[-1]}" - ret.append( - f"[{module}](https://api.python.langchain.com/en/latest/{doc_path.split('langchain.com/')[-1]})" - ) - return ret - - -def log_results(arxiv_id2urls): - arxiv_ids = arxiv_id2urls.keys() - doc_number, api_number = 0, 0 - for urls in arxiv_id2urls.values(): - if "docs" in urls: - doc_number += len(urls["docs"]) - if "api" in urls: - api_number += len(urls["api"]) - logger.info( - f"Found {len(arxiv_ids)} arXiv references in the {doc_number} docs and in {api_number} API Refs." + arxiv_id2type2key2urls = dict.fromkeys( + arxiv_id2file_names_new | arxiv_id2code_urls_new | arxiv_id2templates_new ) + arxiv_id2type2key2urls = {k: {} for k in arxiv_id2type2key2urls} + for arxiv_id, key2urls in arxiv_id2file_names_new.items(): + arxiv_id2type2key2urls[arxiv_id]["docs"] = key2urls + for arxiv_id, key2urls in arxiv_id2code_urls_new.items(): + arxiv_id2type2key2urls[arxiv_id]["apis"] = key2urls + for arxiv_id, key2urls in arxiv_id2templates_new.items(): + arxiv_id2type2key2urls[arxiv_id]["templates"] = key2urls + + # reverse sort by the arxiv_id (the newest papers first) + ret = dict( + sorted(arxiv_id2type2key2urls.items(), key=lambda item: item[0], reverse=True) + ) + return ret + + +def _is_url_ok(url: str) -> bool: + """Check if the url page is open without error.""" + import requests + + try: + response = requests.get(url) + response.raise_for_status() + except requests.exceptions.RequestException as ex: + logger.warning(f"Could not open the {url}.") + return False + return True class ArxivAPIWrapper(BaseModel): @@ -335,7 +376,7 @@ class ArxivAPIWrapper(BaseModel): return values def get_papers( - self, arxiv_id2urls: dict[str, dict[str, set[str]]] + self, arxiv_id2type2key2urls: dict[str, dict[str, dict[str, str]]] ) -> list[ArxivPaper]: """ Performs an arxiv search and returns information about the papers found. @@ -343,8 +384,8 @@ class ArxivAPIWrapper(BaseModel): If an error occurs or no documents found, error text is returned instead. Args: - arxiv_id2urls: Dictionary with arxiv_id as key and dictionary - with sets of doc file names and API Ref urls. + arxiv_id2type2key2urls: Dictionary with arxiv_id as key and dictionary + with dicts of doc file names/API objects/templates to urls. Returns: List of ArxivPaper objects. @@ -356,10 +397,10 @@ class ArxivAPIWrapper(BaseModel): else: return [str(a) for a in authors] - if not arxiv_id2urls: + if not arxiv_id2type2key2urls: return [] try: - arxiv_ids = list(arxiv_id2urls.keys()) + arxiv_ids = list(arxiv_id2type2key2urls.keys()) results = self.arxiv_search( id_list=arxiv_ids, max_results=len(arxiv_ids), @@ -374,38 +415,99 @@ class ArxivAPIWrapper(BaseModel): abstract=result.summary, url=result.entry_id, published_date=str(result.published.date()), - referencing_docs=urls["docs"] if "docs" in urls else [], - referencing_api_refs=urls["api"] if "api" in urls else [], + referencing_doc2url=type2key2urls["docs"] + if "docs" in type2key2urls + else {}, + referencing_api_ref2url=type2key2urls["apis"] + if "apis" in type2key2urls + else {}, + referencing_template2url=type2key2urls["templates"] + if "templates" in type2key2urls + else {}, ) - for result, urls in zip(results, arxiv_id2urls.values()) + for result, type2key2urls in zip(results, arxiv_id2type2key2urls.values()) ] return papers -def generate_arxiv_references_page(file_name: str, papers: list[ArxivPaper]) -> None: +def _format_doc_url(doc_path: str) -> str: + return f"https://{LANGCHAIN_PYTHON_URL}/{doc_path}" + + +def _format_api_ref_url(doc_path: str, compact: bool = False) -> str: + # agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction + return f"https://api.{LANGCHAIN_PYTHON_URL}/en/latest/{doc_path.split('langchain.com/')[-1]}" + + +def _format_template_url(template_name: str) -> str: + return f"https://{LANGCHAIN_PYTHON_URL}/docs/templates/{template_name}" + + +def _compact_module_full_name(doc_path: str) -> str: + # agents/langchain_core.agents.AgentAction.html#langchain_core.agents.AgentAction + module = doc_path.split("#")[1].replace("module-", "") + if module.count(".") > 2: + # langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI + # -> langchain_community.llms...OCIModelDeploymentTGI + module_parts = module.split(".") + module = f"{module_parts[0]}.{module_parts[1]}...{module_parts[-1]}" + return module + + +def log_results(arxiv_id2type2key2urls): + arxiv_ids = arxiv_id2type2key2urls.keys() + doc_number, api_number, templates_number = 0, 0, 0 + for type2key2url in arxiv_id2type2key2urls.values(): + if "docs" in type2key2url: + doc_number += len(type2key2url["docs"]) + if "apis" in type2key2url: + api_number += len(type2key2url["apis"]) + if "templates" in type2key2url: + templates_number += len(type2key2url["templates"]) + logger.warning( + f"Found {len(arxiv_ids)} arXiv references in the {doc_number} docs, {api_number} API Refs," + f" and {templates_number} Templates." + ) + + +def generate_arxiv_references_page(file_name: Path, papers: list[ArxivPaper]) -> None: with open(file_name, "w") as f: # Write the table headers f.write("""# arXiv LangChain implements the latest research in the field of Natural Language Processing. -This page contains `arXiv` papers referenced in the LangChain Documentation and API Reference. +This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference, +and Templates. ## Summary -| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation and API Reference | -|------------------|---------|-------------------|-------------------------| +| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation| +|------------------|---------|-------------------|------------------------| """) for paper in papers: refs = [] - if paper.referencing_docs: + if paper.referencing_doc2url: refs += [ - "`Docs:` " + ", ".join(_format_doc_link(paper.referencing_docs)) + "`Docs:` " + + ", ".join( + f"[{key}]({url})" + for key, url in paper.referencing_doc2url.items() + ) ] - if paper.referencing_api_refs: + if paper.referencing_api_ref2url: refs += [ "`API:` " + ", ".join( - _format_api_ref_link(paper.referencing_api_refs, compact=True) + f"[{_compact_module_full_name(key)}]({url})" + for key, url in paper.referencing_api_ref2url.items() + ) + ] + if paper.referencing_template2url: + refs += [ + "`Template:` " + + ", ".join( + f"[{key}]({url})" + for key, url in paper.referencing_template2url.items() ) ] refs_str = ", ".join(refs) @@ -417,15 +519,23 @@ This page contains `arXiv` papers referenced in the LangChain Documentation and for paper in papers: docs_refs = ( - f"- **LangChain Documentation:** {', '.join(_format_doc_link(paper.referencing_docs))}" - if paper.referencing_docs + f" - **Documentation:** {', '.join(f'[{key}]({url})' for key, url in paper.referencing_doc2url.items())}" + if paper.referencing_doc2url else "" ) api_ref_refs = ( - f"- **LangChain API Reference:** {', '.join(_format_api_ref_link(paper.referencing_api_refs))}" - if paper.referencing_api_refs + f" - **API Reference:** {', '.join(f'[{_compact_module_full_name(key)}]({url})' for key, url in paper.referencing_api_ref2url.items())}" + if paper.referencing_api_ref2url else "" ) + template_refs = ( + f" - **Template:** {', '.join(f'[{key}]({url})' for key, url in paper.referencing_template2url.items())}" + if paper.referencing_template2url + else "" + ) + refs = "\n".join( + [el for el in [docs_refs, api_ref_refs, template_refs] if el] + ) f.write(f""" ## {paper.title} @@ -434,13 +544,14 @@ This page contains `arXiv` papers referenced in the LangChain Documentation and - **Authors:** {', '.join(paper.authors)} - **Published Date:** {paper.published_date} - **URL:** {paper.url} -{docs_refs} -{api_ref_refs} +- **LangChain:** + +{refs} **Abstract:** {paper.abstract} """) - logger.info(f"Created the {file_name} file with {len(papers)} arXiv references.") + logger.warning(f"Created the {file_name} file with {len(papers)} arXiv references.") def main(): @@ -450,14 +561,17 @@ def main(): arxiv_id2module_name_and_members ) arxiv_id2file_names = search_documentation_for_arxiv_references(DOCS_DIR) - arxiv_id2urls = compound_urls(arxiv_id2file_names, arxiv_id2code_urls) - log_results(arxiv_id2urls) + arxiv_id2templates = search_templates_for_arxiv_references(TEMPLATES_DIR) + arxiv_id2type2key2urls = compound_urls( + arxiv_id2file_names, arxiv_id2code_urls, arxiv_id2templates + ) + log_results(arxiv_id2type2key2urls) # get the arXiv paper information - papers = ArxivAPIWrapper().get_papers(arxiv_id2urls) + papers = ArxivAPIWrapper().get_papers(arxiv_id2type2key2urls) # generate the arXiv references page - output_file = str(DOCS_DIR / "additional_resources" / "arxiv_references.mdx") + output_file = DOCS_DIR / "additional_resources" / "arxiv_references.mdx" generate_arxiv_references_page(output_file, papers)