mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-20 19:41:23 +00:00
community[patch]: allow additional kwargs in MlflowEmbeddings for compatibility with Cohere API (#15242)
- **Description:** add support for kwargs in`MlflowEmbeddings` `embed_document()` and `embed_query()` so that all the arguments required by Cohere API (and others?) can be passed down to the server. - **Issue:** #15234 - **Dependencies:** MLflow with MLflow Deployments (`pip install mlflow[genai]`) **Tests** Now this code [adapted from the docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example) for the Cohere API works locally. ```python """ Setup ----- export COHERE_API_KEY=... mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml Run --- python /path/to/this/file.py """ embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings") print(embeddings.embed_query("hello")[:3]) print(embeddings.embed_documents(["hello", "world"])[0][:3]) ``` Output ``` [0.060455322, 0.028793335, -0.025848389] [0.031707764, 0.021057129, -0.009361267] ```
This commit is contained in:
parent
aad2aa7188
commit
6b2a57161a
@ -57,7 +57,10 @@ from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
|
|||||||
from langchain_community.embeddings.llm_rails import LLMRailsEmbeddings
|
from langchain_community.embeddings.llm_rails import LLMRailsEmbeddings
|
||||||
from langchain_community.embeddings.localai import LocalAIEmbeddings
|
from langchain_community.embeddings.localai import LocalAIEmbeddings
|
||||||
from langchain_community.embeddings.minimax import MiniMaxEmbeddings
|
from langchain_community.embeddings.minimax import MiniMaxEmbeddings
|
||||||
from langchain_community.embeddings.mlflow import MlflowEmbeddings
|
from langchain_community.embeddings.mlflow import (
|
||||||
|
MlflowCohereEmbeddings,
|
||||||
|
MlflowEmbeddings,
|
||||||
|
)
|
||||||
from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
|
from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
|
||||||
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
|
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
|
||||||
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
|
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
|
||||||
@ -102,6 +105,7 @@ __all__ = [
|
|||||||
"LLMRailsEmbeddings",
|
"LLMRailsEmbeddings",
|
||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
"MlflowEmbeddings",
|
"MlflowEmbeddings",
|
||||||
|
"MlflowCohereEmbeddings",
|
||||||
"MlflowAIGatewayEmbeddings",
|
"MlflowAIGatewayEmbeddings",
|
||||||
"ModelScopeEmbeddings",
|
"ModelScopeEmbeddings",
|
||||||
"TensorflowHubEmbeddings",
|
"TensorflowHubEmbeddings",
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
from typing import Any, Iterator, List
|
from typing import Any, Dict, Iterator, List
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
from langchain_core.embeddings import Embeddings
|
from langchain_core.embeddings import Embeddings
|
||||||
@ -34,6 +34,10 @@ class MlflowEmbeddings(Embeddings, BaseModel):
|
|||||||
target_uri: str
|
target_uri: str
|
||||||
"""The target URI to use."""
|
"""The target URI to use."""
|
||||||
_client: Any = PrivateAttr()
|
_client: Any = PrivateAttr()
|
||||||
|
"""The parameters to use for queries."""
|
||||||
|
query_params: Dict[str, str] = {}
|
||||||
|
"""The parameters to use for documents."""
|
||||||
|
documents_params: Dict[str, str] = {}
|
||||||
|
|
||||||
def __init__(self, **kwargs: Any):
|
def __init__(self, **kwargs: Any):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
@ -63,12 +67,22 @@ class MlflowEmbeddings(Embeddings, BaseModel):
|
|||||||
f"The scheme must be one of {allowed}."
|
f"The scheme must be one of {allowed}."
|
||||||
)
|
)
|
||||||
|
|
||||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
def embed(self, texts: List[str], params: Dict[str, str]) -> List[List[float]]:
|
||||||
embeddings: List[List[float]] = []
|
embeddings: List[List[float]] = []
|
||||||
for txt in _chunk(texts, 20):
|
for txt in _chunk(texts, 20):
|
||||||
resp = self._client.predict(endpoint=self.endpoint, inputs={"input": txt})
|
resp = self._client.predict(
|
||||||
|
endpoint=self.endpoint, inputs={"input": txt, **params}
|
||||||
|
)
|
||||||
embeddings.extend(r["embedding"] for r in resp["data"])
|
embeddings.extend(r["embedding"] for r in resp["data"])
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
return self.embed(texts, params=self.documents_params)
|
||||||
|
|
||||||
def embed_query(self, text: str) -> List[float]:
|
def embed_query(self, text: str) -> List[float]:
|
||||||
return self.embed_documents([text])[0]
|
return self.embed([text], params=self.query_params)[0]
|
||||||
|
|
||||||
|
|
||||||
|
class MlflowCohereEmbeddings(MlflowEmbeddings):
|
||||||
|
query_params: Dict[str, str] = {"input_type": "search_query"}
|
||||||
|
documents_params: Dict[str, str] = {"input_type": "search_document"}
|
||||||
|
@ -18,6 +18,7 @@ EXPECTED_ALL = [
|
|||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
"MlflowAIGatewayEmbeddings",
|
"MlflowAIGatewayEmbeddings",
|
||||||
"MlflowEmbeddings",
|
"MlflowEmbeddings",
|
||||||
|
"MlflowCohereEmbeddings",
|
||||||
"ModelScopeEmbeddings",
|
"ModelScopeEmbeddings",
|
||||||
"TensorflowHubEmbeddings",
|
"TensorflowHubEmbeddings",
|
||||||
"SagemakerEndpointEmbeddings",
|
"SagemakerEndpointEmbeddings",
|
||||||
|
Loading…
Reference in New Issue
Block a user