mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 01:19:31 +00:00
community[patch]: LanceDB integration improvements/fixes (#16173)
Hi, I'm from the LanceDB team. Improves LanceDB integration by making it easier to use - now you aren't required to create tables manually and pass them in the constructor, although that is still backward compatible. Bug fix - pandas was being used even though it's not a dependency for LanceDB or langchain PS - this issue was raised a few months ago but lost traction. It is a feature improvement for our users kindly review this , Thanks !
This commit is contained in:
parent
e92e96193f
commit
6c18f73ca5
File diff suppressed because one or more lines are too long
@ -131,7 +131,7 @@ table = db.create_table(
|
||||
raw_documents = TextLoader('../../../state_of_the_union.txt').load()
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
documents = text_splitter.split_documents(raw_documents)
|
||||
db = LanceDB.from_documents(documents, OpenAIEmbeddings(), connection=table)
|
||||
db = LanceDB.from_documents(documents, OpenAIEmbeddings())
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
@ -12,6 +12,18 @@ class LanceDB(VectorStore):
|
||||
"""`LanceDB` vector store.
|
||||
|
||||
To use, you should have ``lancedb`` python package installed.
|
||||
You can install it with ``pip install lancedb``.
|
||||
|
||||
Args:
|
||||
connection: LanceDB connection to use. If not provided, a new connection
|
||||
will be created.
|
||||
embedding: Embedding to use for the vectorstore.
|
||||
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
|
||||
id_key: Key to use for the id in the database. Defaults to ``id``.
|
||||
text_key: Key to use for the text in the database. Defaults to ``text``.
|
||||
table_name: Name of the table to use. Defaults to ``vectorstore``.
|
||||
|
||||
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
@ -25,13 +37,14 @@ class LanceDB(VectorStore):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
connection: Any,
|
||||
embedding: Embeddings,
|
||||
connection: Optional[Any] = None,
|
||||
embedding: Optional[Embeddings] = None,
|
||||
vector_key: Optional[str] = "vector",
|
||||
id_key: Optional[str] = "id",
|
||||
text_key: Optional[str] = "text",
|
||||
table_name: Optional[str] = "vectorstore",
|
||||
):
|
||||
"""Initialize with Lance DB connection"""
|
||||
"""Initialize with Lance DB vectorstore"""
|
||||
try:
|
||||
import lancedb
|
||||
except ImportError:
|
||||
@ -39,19 +52,28 @@ class LanceDB(VectorStore):
|
||||
"Could not import lancedb python package. "
|
||||
"Please install it with `pip install lancedb`."
|
||||
)
|
||||
if not isinstance(connection, lancedb.db.LanceTable):
|
||||
raise ValueError(
|
||||
"connection should be an instance of lancedb.db.LanceTable, ",
|
||||
f"got {type(connection)}",
|
||||
)
|
||||
self._connection = connection
|
||||
self.lancedb = lancedb
|
||||
self._embedding = embedding
|
||||
self._vector_key = vector_key
|
||||
self._id_key = id_key
|
||||
self._text_key = text_key
|
||||
self._table_name = table_name
|
||||
|
||||
if self._embedding is None:
|
||||
raise ValueError("embedding should be provided")
|
||||
|
||||
if connection is not None:
|
||||
if not isinstance(connection, lancedb.db.LanceTable):
|
||||
raise ValueError(
|
||||
"connection should be an instance of lancedb.db.LanceTable, ",
|
||||
f"got {type(connection)}",
|
||||
)
|
||||
self._connection = connection
|
||||
else:
|
||||
self._connection = self._init_table()
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Embeddings:
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
return self._embedding
|
||||
|
||||
def add_texts(
|
||||
@ -74,7 +96,7 @@ class LanceDB(VectorStore):
|
||||
# Embed texts and create documents
|
||||
docs = []
|
||||
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
||||
embeddings = self._embedding.embed_documents(list(texts))
|
||||
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
|
||||
for idx, text in enumerate(texts):
|
||||
embedding = embeddings[idx]
|
||||
metadata = metadatas[idx] if metadatas else {}
|
||||
@ -86,7 +108,6 @@ class LanceDB(VectorStore):
|
||||
**metadata,
|
||||
}
|
||||
)
|
||||
|
||||
self._connection.add(docs)
|
||||
return ids
|
||||
|
||||
@ -102,14 +123,23 @@ class LanceDB(VectorStore):
|
||||
Returns:
|
||||
List of documents most similar to the query.
|
||||
"""
|
||||
embedding = self._embedding.embed_query(query)
|
||||
docs = self._connection.search(embedding).limit(k).to_df()
|
||||
embedding = self._embedding.embed_query(query) # type: ignore
|
||||
docs = (
|
||||
self._connection.search(embedding, vector_column_name=self._vector_key)
|
||||
.limit(k)
|
||||
.to_arrow()
|
||||
)
|
||||
columns = docs.schema.names
|
||||
return [
|
||||
Document(
|
||||
page_content=row[self._text_key],
|
||||
metadata=row[docs.columns != self._text_key],
|
||||
page_content=docs[self._text_key][idx].as_py(),
|
||||
metadata={
|
||||
col: docs[col][idx].as_py()
|
||||
for col in columns
|
||||
if col != self._text_key
|
||||
},
|
||||
)
|
||||
for _, row in docs.iterrows()
|
||||
for idx in range(len(docs))
|
||||
]
|
||||
|
||||
@classmethod
|
||||
@ -134,3 +164,23 @@ class LanceDB(VectorStore):
|
||||
instance.add_texts(texts, metadatas=metadatas, **kwargs)
|
||||
|
||||
return instance
|
||||
|
||||
def _init_table(self) -> Any:
|
||||
import pyarrow as pa
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field(
|
||||
self._vector_key,
|
||||
pa.list_(
|
||||
pa.float32(),
|
||||
len(self.embeddings.embed_query("test")), # type: ignore
|
||||
),
|
||||
),
|
||||
pa.field(self._id_key, pa.string()),
|
||||
pa.field(self._text_key, pa.string()),
|
||||
]
|
||||
)
|
||||
db = self.lancedb.connect("/tmp/lancedb")
|
||||
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
|
||||
return tbl
|
||||
|
@ -1,8 +1,11 @@
|
||||
import pytest
|
||||
|
||||
from langchain_community.vectorstores import LanceDB
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
|
||||
def test_lancedb() -> None:
|
||||
@pytest.mark.requires("lancedb")
|
||||
def test_lancedb_with_connection() -> None:
|
||||
import lancedb
|
||||
|
||||
embeddings = FakeEmbeddings()
|
||||
@ -23,22 +26,23 @@ def test_lancedb() -> None:
|
||||
assert "text 1" in result_texts
|
||||
|
||||
|
||||
def test_lancedb_add_texts() -> None:
|
||||
import lancedb
|
||||
|
||||
@pytest.mark.requires("lancedb")
|
||||
def test_lancedb_without_connection() -> None:
|
||||
embeddings = FakeEmbeddings()
|
||||
db = lancedb.connect("/tmp/lancedb")
|
||||
texts = ["text 1"]
|
||||
vectors = embeddings.embed_documents(texts)
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"vector": vectors[idx], "id": text, "text": text}
|
||||
for idx, text in enumerate(texts)
|
||||
],
|
||||
mode="overwrite",
|
||||
)
|
||||
store = LanceDB(table, embeddings)
|
||||
texts = ["text 1", "text 2", "item 3"]
|
||||
|
||||
store = LanceDB(embedding=embeddings)
|
||||
store.add_texts(texts)
|
||||
result = store.similarity_search("text 1")
|
||||
result_texts = [doc.page_content for doc in result]
|
||||
assert "text 1" in result_texts
|
||||
|
||||
|
||||
@pytest.mark.requires("lancedb")
|
||||
def test_lancedb_add_texts() -> None:
|
||||
embeddings = FakeEmbeddings()
|
||||
|
||||
store = LanceDB(embedding=embeddings)
|
||||
store.add_texts(["text 2"])
|
||||
result = store.similarity_search("text 2")
|
||||
result_texts = [doc.page_content for doc in result]
|
||||
|
Loading…
Reference in New Issue
Block a user