community[patch]: LanceDB integration improvements/fixes (#16173)

Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
This commit is contained in:
Raghav Dixit 2024-02-19 13:22:02 -05:00 committed by GitHub
parent e92e96193f
commit 6c18f73ca5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 226 additions and 74 deletions

File diff suppressed because one or more lines are too long

View File

@ -131,7 +131,7 @@ table = db.create_table(
raw_documents = TextLoader('../../../state_of_the_union.txt').load() raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents) documents = text_splitter.split_documents(raw_documents)
db = LanceDB.from_documents(documents, OpenAIEmbeddings(), connection=table) db = LanceDB.from_documents(documents, OpenAIEmbeddings())
``` ```
</TabItem> </TabItem>

View File

@ -12,6 +12,18 @@ class LanceDB(VectorStore):
"""`LanceDB` vector store. """`LanceDB` vector store.
To use, you should have ``lancedb`` python package installed. To use, you should have ``lancedb`` python package installed.
You can install it with ``pip install lancedb``.
Args:
connection: LanceDB connection to use. If not provided, a new connection
will be created.
embedding: Embedding to use for the vectorstore.
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
id_key: Key to use for the id in the database. Defaults to ``id``.
text_key: Key to use for the text in the database. Defaults to ``text``.
table_name: Name of the table to use. Defaults to ``vectorstore``.
Example: Example:
.. code-block:: python .. code-block:: python
@ -25,13 +37,14 @@ class LanceDB(VectorStore):
def __init__( def __init__(
self, self,
connection: Any, connection: Optional[Any] = None,
embedding: Embeddings, embedding: Optional[Embeddings] = None,
vector_key: Optional[str] = "vector", vector_key: Optional[str] = "vector",
id_key: Optional[str] = "id", id_key: Optional[str] = "id",
text_key: Optional[str] = "text", text_key: Optional[str] = "text",
table_name: Optional[str] = "vectorstore",
): ):
"""Initialize with Lance DB connection""" """Initialize with Lance DB vectorstore"""
try: try:
import lancedb import lancedb
except ImportError: except ImportError:
@ -39,19 +52,28 @@ class LanceDB(VectorStore):
"Could not import lancedb python package. " "Could not import lancedb python package. "
"Please install it with `pip install lancedb`." "Please install it with `pip install lancedb`."
) )
if not isinstance(connection, lancedb.db.LanceTable): self.lancedb = lancedb
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
self._embedding = embedding self._embedding = embedding
self._vector_key = vector_key self._vector_key = vector_key
self._id_key = id_key self._id_key = id_key
self._text_key = text_key self._text_key = text_key
self._table_name = table_name
if self._embedding is None:
raise ValueError("embedding should be provided")
if connection is not None:
if not isinstance(connection, lancedb.db.LanceTable):
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
else:
self._connection = self._init_table()
@property @property
def embeddings(self) -> Embeddings: def embeddings(self) -> Optional[Embeddings]:
return self._embedding return self._embedding
def add_texts( def add_texts(
@ -74,7 +96,7 @@ class LanceDB(VectorStore):
# Embed texts and create documents # Embed texts and create documents
docs = [] docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts] ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self._embedding.embed_documents(list(texts)) embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
for idx, text in enumerate(texts): for idx, text in enumerate(texts):
embedding = embeddings[idx] embedding = embeddings[idx]
metadata = metadatas[idx] if metadatas else {} metadata = metadatas[idx] if metadatas else {}
@ -86,7 +108,6 @@ class LanceDB(VectorStore):
**metadata, **metadata,
} }
) )
self._connection.add(docs) self._connection.add(docs)
return ids return ids
@ -102,14 +123,23 @@ class LanceDB(VectorStore):
Returns: Returns:
List of documents most similar to the query. List of documents most similar to the query.
""" """
embedding = self._embedding.embed_query(query) embedding = self._embedding.embed_query(query) # type: ignore
docs = self._connection.search(embedding).limit(k).to_df() docs = (
self._connection.search(embedding, vector_column_name=self._vector_key)
.limit(k)
.to_arrow()
)
columns = docs.schema.names
return [ return [
Document( Document(
page_content=row[self._text_key], page_content=docs[self._text_key][idx].as_py(),
metadata=row[docs.columns != self._text_key], metadata={
col: docs[col][idx].as_py()
for col in columns
if col != self._text_key
},
) )
for _, row in docs.iterrows() for idx in range(len(docs))
] ]
@classmethod @classmethod
@ -134,3 +164,23 @@ class LanceDB(VectorStore):
instance.add_texts(texts, metadatas=metadatas, **kwargs) instance.add_texts(texts, metadatas=metadatas, **kwargs)
return instance return instance
def _init_table(self) -> Any:
import pyarrow as pa
schema = pa.schema(
[
pa.field(
self._vector_key,
pa.list_(
pa.float32(),
len(self.embeddings.embed_query("test")), # type: ignore
),
),
pa.field(self._id_key, pa.string()),
pa.field(self._text_key, pa.string()),
]
)
db = self.lancedb.connect("/tmp/lancedb")
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
return tbl

View File

@ -1,8 +1,11 @@
import pytest
from langchain_community.vectorstores import LanceDB from langchain_community.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_lancedb() -> None: @pytest.mark.requires("lancedb")
def test_lancedb_with_connection() -> None:
import lancedb import lancedb
embeddings = FakeEmbeddings() embeddings = FakeEmbeddings()
@ -23,22 +26,23 @@ def test_lancedb() -> None:
assert "text 1" in result_texts assert "text 1" in result_texts
def test_lancedb_add_texts() -> None: @pytest.mark.requires("lancedb")
import lancedb def test_lancedb_without_connection() -> None:
embeddings = FakeEmbeddings() embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb") texts = ["text 1", "text 2", "item 3"]
texts = ["text 1"]
vectors = embeddings.embed_documents(texts) store = LanceDB(embedding=embeddings)
table = db.create_table( store.add_texts(texts)
"my_table", result = store.similarity_search("text 1")
data=[ result_texts = [doc.page_content for doc in result]
{"vector": vectors[idx], "id": text, "text": text} assert "text 1" in result_texts
for idx, text in enumerate(texts)
],
mode="overwrite", @pytest.mark.requires("lancedb")
) def test_lancedb_add_texts() -> None:
store = LanceDB(table, embeddings) embeddings = FakeEmbeddings()
store = LanceDB(embedding=embeddings)
store.add_texts(["text 2"]) store.add_texts(["text 2"])
result = store.similarity_search("text 2") result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result] result_texts = [doc.page_content for doc in result]