mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 19:12:42 +00:00
Harrison/aleph alpha (#8735)
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -16,10 +16,11 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
|
||||
|
||||
embeddings = AlephAlphaSymmetricSemanticEmbedding()
|
||||
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
||||
normalize=True, compress_to_size=128
|
||||
)
|
||||
|
||||
document = "This is a content of the document"
|
||||
query = "What is the content of the document?"
|
||||
@@ -30,24 +31,55 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
"""Aleph Alpha client."""
|
||||
model: Optional[str] = "luminous-base"
|
||||
|
||||
# Embedding params
|
||||
model: str = "luminous-base"
|
||||
"""Model name to use."""
|
||||
hosting: Optional[str] = "https://api.aleph-alpha.com"
|
||||
"""Optional parameter that specifies which datacenters may process the request."""
|
||||
normalize: Optional[bool] = True
|
||||
"""Should returned embeddings be normalized"""
|
||||
compress_to_size: Optional[int] = 128
|
||||
compress_to_size: Optional[int] = None
|
||||
"""Should the returned embeddings come back as an original 5120-dim vector,
|
||||
or should it be compressed to 128-dim."""
|
||||
normalize: Optional[bool] = None
|
||||
"""Should returned embeddings be normalized"""
|
||||
contextual_control_threshold: Optional[int] = None
|
||||
"""Attention control parameters only apply to those tokens that have
|
||||
explicitly been set in the request."""
|
||||
control_log_additive: Optional[bool] = True
|
||||
control_log_additive: bool = True
|
||||
"""Apply controls on prompt items by adding the log(control_factor)
|
||||
to attention scores."""
|
||||
|
||||
# Client params
|
||||
aleph_alpha_api_key: Optional[str] = None
|
||||
"""API key for Aleph Alpha API."""
|
||||
host: str = "https://api.aleph-alpha.com"
|
||||
"""The hostname of the API host.
|
||||
The default one is "https://api.aleph-alpha.com")"""
|
||||
hosting: Optional[str] = None
|
||||
"""Determines in which datacenters the request may be processed.
|
||||
You can either set the parameter to "aleph-alpha" or omit it (defaulting to None).
|
||||
Not setting this value, or setting it to None, gives us maximal flexibility
|
||||
in processing your request in our
|
||||
own datacenters and on servers hosted with other providers.
|
||||
Choose this option for maximal availability.
|
||||
Setting it to "aleph-alpha" allows us to only process the request
|
||||
in our own datacenters.
|
||||
Choose this option for maximal data privacy."""
|
||||
request_timeout_seconds: int = 305
|
||||
"""Client timeout that will be set for HTTP requests in the
|
||||
`requests` library's API calls.
|
||||
Server will close all requests after 300 seconds with an internal server error."""
|
||||
total_retries: int = 8
|
||||
"""The number of retries made in case requests fail with certain retryable
|
||||
status codes. If the last
|
||||
retry fails a corresponding exception is raised. Note, that between retries
|
||||
an exponential backoff
|
||||
is applied, starting with 0.5 s after the first retry and doubling for each
|
||||
retry made. So with the
|
||||
default setting of 8 retries a total wait time of 63.5 s is added between
|
||||
the retries."""
|
||||
nice: bool = False
|
||||
"""Setting this to True, will signal to the API that you intend to be
|
||||
nice to other users
|
||||
by de-prioritizing your request below concurrent ones."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
@@ -57,12 +89,21 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
|
||||
)
|
||||
try:
|
||||
from aleph_alpha_client import Client
|
||||
|
||||
values["client"] = Client(
|
||||
token=aleph_alpha_api_key,
|
||||
host=values["host"],
|
||||
hosting=values["hosting"],
|
||||
request_timeout_seconds=values["request_timeout_seconds"],
|
||||
total_retries=values["total_retries"],
|
||||
nice=values["nice"],
|
||||
)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
"Please install it with `pip install aleph_alpha_client`."
|
||||
)
|
||||
values["client"] = Client(token=aleph_alpha_api_key)
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
@@ -152,7 +193,9 @@ class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding
|
||||
|
||||
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
|
||||
|
||||
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
|
||||
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
||||
normalize=True, compress_to_size=128
|
||||
)
|
||||
text = "This is a test text"
|
||||
|
||||
doc_result = embeddings.embed_documents([text])
|
||||
|
@@ -125,12 +125,43 @@ class AlephAlpha(LLM):
|
||||
raw_completion: bool = False
|
||||
"""Force the raw completion of the model to be returned."""
|
||||
|
||||
aleph_alpha_api_key: Optional[str] = None
|
||||
"""API key for Aleph Alpha API."""
|
||||
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
"""Stop sequences to use."""
|
||||
|
||||
# Client params
|
||||
aleph_alpha_api_key: Optional[str] = None
|
||||
"""API key for Aleph Alpha API."""
|
||||
host: str = "https://api.aleph-alpha.com"
|
||||
"""The hostname of the API host.
|
||||
The default one is "https://api.aleph-alpha.com")"""
|
||||
hosting: Optional[str] = None
|
||||
"""Determines in which datacenters the request may be processed.
|
||||
You can either set the parameter to "aleph-alpha" or omit it (defaulting to None).
|
||||
Not setting this value, or setting it to None, gives us maximal
|
||||
flexibility in processing your request in our
|
||||
own datacenters and on servers hosted with other providers.
|
||||
Choose this option for maximal availability.
|
||||
Setting it to "aleph-alpha" allows us to only process the
|
||||
request in our own datacenters.
|
||||
Choose this option for maximal data privacy."""
|
||||
request_timeout_seconds: int = 305
|
||||
"""Client timeout that will be set for HTTP requests in the
|
||||
`requests` library's API calls.
|
||||
Server will close all requests after 300 seconds with an internal server error."""
|
||||
total_retries: int = 8
|
||||
"""The number of retries made in case requests fail with certain retryable
|
||||
status codes. If the last
|
||||
retry fails a corresponding exception is raised. Note, that between retries
|
||||
an exponential backoff
|
||||
is applied, starting with 0.5 s after the first retry and doubling for
|
||||
each retry made. So with the
|
||||
default setting of 8 retries a total wait time of 63.5 s is added
|
||||
between the retries."""
|
||||
nice: bool = False
|
||||
"""Setting this to True, will signal to the API that you intend to be
|
||||
nice to other users
|
||||
by de-prioritizing your request below concurrent ones."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
@@ -143,9 +174,16 @@ class AlephAlpha(LLM):
|
||||
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
|
||||
)
|
||||
try:
|
||||
import aleph_alpha_client
|
||||
from aleph_alpha_client import Client
|
||||
|
||||
values["client"] = aleph_alpha_client.Client(token=aleph_alpha_api_key)
|
||||
values["client"] = Client(
|
||||
token=aleph_alpha_api_key,
|
||||
host=values["host"],
|
||||
hosting=values["hosting"],
|
||||
request_timeout_seconds=values["request_timeout_seconds"],
|
||||
total_retries=values["total_retries"],
|
||||
nice=values["nice"],
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
@@ -241,3 +279,9 @@ class AlephAlpha(LLM):
|
||||
if stop is not None or self.stop_sequences is not None:
|
||||
text = enforce_stop_tokens(text, params["stop_sequences"])
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
aa = AlephAlpha()
|
||||
|
||||
print(aa("How are you?"))
|
||||
|
Reference in New Issue
Block a user