mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-18 08:03:36 +00:00
community[minor]: Revamp PGVector Filtering (#18992)
This PR makes the following updates in the pgvector database: 1. Use JSONB field for metadata instead of JSON 2. Update operator syntax to include required `$` prefix before the operators (otherwise there will be name collisions with fields) 3. The change is non-breaking, old functionality is still the default, but it will emit a deprecation warning 4. Previous functionality has bugs associated with comparisons due to casting to text (so lexical ordering is used incorrectly for numeric fields) 5. Adds an a GIN index on the JSONB field for more efficient querying
This commit is contained in:
@@ -0,0 +1,222 @@
|
||||
"""Module contains test cases for testing filtering of documents in vector stores.
|
||||
"""
|
||||
from langchain_core.documents import Document
|
||||
|
||||
metadatas = [
|
||||
{
|
||||
"name": "adam",
|
||||
"date": "2021-01-01",
|
||||
"count": 1,
|
||||
"is_active": True,
|
||||
"tags": ["a", "b"],
|
||||
"location": [1.0, 2.0],
|
||||
"info": {"address": "123 main st", "phone": "123-456-7890"},
|
||||
"id": 1,
|
||||
"height": 10.0, # Float column
|
||||
"happiness": 0.9, # Float column
|
||||
"sadness": 0.1, # Float column
|
||||
},
|
||||
{
|
||||
"name": "bob",
|
||||
"date": "2021-01-02",
|
||||
"count": 2,
|
||||
"is_active": False,
|
||||
"tags": ["b", "c"],
|
||||
"location": [2.0, 3.0],
|
||||
"info": {"address": "456 main st", "phone": "123-456-7890"},
|
||||
"id": 2,
|
||||
"height": 5.7, # Float column
|
||||
"happiness": 0.8, # Float column
|
||||
"sadness": 0.1, # Float column
|
||||
},
|
||||
{
|
||||
"name": "jane",
|
||||
"date": "2021-01-01",
|
||||
"count": 3,
|
||||
"is_active": True,
|
||||
"tags": ["b", "d"],
|
||||
"location": [3.0, 4.0],
|
||||
"info": {"address": "789 main st", "phone": "123-456-7890"},
|
||||
"id": 3,
|
||||
"height": 2.4, # Float column
|
||||
"happiness": None,
|
||||
# Sadness missing intentionally
|
||||
},
|
||||
]
|
||||
texts = ["id {id}".format(id=metadata["id"]) for metadata in metadatas]
|
||||
|
||||
DOCUMENTS = [
|
||||
Document(page_content=text, metadata=metadata)
|
||||
for text, metadata in zip(texts, metadatas)
|
||||
]
|
||||
|
||||
|
||||
TYPE_1_FILTERING_TEST_CASES = [
|
||||
# These tests only involve equality checks
|
||||
(
|
||||
{"id": 1},
|
||||
[1],
|
||||
),
|
||||
# String field
|
||||
(
|
||||
# check name
|
||||
{"name": "adam"},
|
||||
[1],
|
||||
),
|
||||
# Boolean fields
|
||||
(
|
||||
{"is_active": True},
|
||||
[1, 3],
|
||||
),
|
||||
(
|
||||
{"is_active": False},
|
||||
[2],
|
||||
),
|
||||
# And semantics for top level filtering
|
||||
(
|
||||
{"id": 1, "is_active": True},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"id": 1, "is_active": False},
|
||||
[],
|
||||
),
|
||||
]
|
||||
|
||||
TYPE_2_FILTERING_TEST_CASES = [
|
||||
# These involve equality checks and other operators
|
||||
# like $ne, $gt, $gte, $lt, $lte, $not
|
||||
(
|
||||
{"id": 1},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"id": {"$ne": 1}},
|
||||
[2, 3],
|
||||
),
|
||||
(
|
||||
{"id": {"$gt": 1}},
|
||||
[2, 3],
|
||||
),
|
||||
(
|
||||
{"id": {"$gte": 1}},
|
||||
[1, 2, 3],
|
||||
),
|
||||
(
|
||||
{"id": {"$lt": 1}},
|
||||
[],
|
||||
),
|
||||
(
|
||||
{"id": {"$lte": 1}},
|
||||
[1],
|
||||
),
|
||||
# Repeat all the same tests with name (string column)
|
||||
(
|
||||
{"name": "adam"},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"name": "bob"},
|
||||
[2],
|
||||
),
|
||||
(
|
||||
{"name": {"$eq": "adam"}},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"name": {"$ne": "adam"}},
|
||||
[2, 3],
|
||||
),
|
||||
# And also gt, gte, lt, lte relying on lexicographical ordering
|
||||
(
|
||||
{"name": {"$gt": "jane"}},
|
||||
[],
|
||||
),
|
||||
(
|
||||
{"name": {"$gte": "jane"}},
|
||||
[3],
|
||||
),
|
||||
(
|
||||
{"name": {"$lt": "jane"}},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"name": {"$lte": "jane"}},
|
||||
[1, 2, 3],
|
||||
),
|
||||
(
|
||||
{"is_active": {"$eq": True}},
|
||||
[1, 3],
|
||||
),
|
||||
(
|
||||
{"is_active": {"$ne": True}},
|
||||
[2],
|
||||
),
|
||||
# Test float column.
|
||||
(
|
||||
{"height": {"$gt": 5.0}},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"height": {"$gte": 5.0}},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"height": {"$lt": 5.0}},
|
||||
[3],
|
||||
),
|
||||
(
|
||||
{"height": {"$lte": 5.8}},
|
||||
[2, 3],
|
||||
),
|
||||
]
|
||||
|
||||
TYPE_3_FILTERING_TEST_CASES = [
|
||||
# These involve usage of AND and OR operators
|
||||
(
|
||||
{"$or": [{"id": 1}, {"id": 2}]},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"$or": [{"id": 1}, {"name": "bob"}]},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"$and": [{"id": 1}, {"id": 2}]},
|
||||
[],
|
||||
),
|
||||
(
|
||||
{"$or": [{"id": 1}, {"id": 2}, {"id": 3}]},
|
||||
[1, 2, 3],
|
||||
),
|
||||
]
|
||||
|
||||
TYPE_4_FILTERING_TEST_CASES = [
|
||||
# These involve special operators like $in, $nin, $between
|
||||
# Test between
|
||||
(
|
||||
{"id": {"$between": (1, 2)}},
|
||||
[1, 2],
|
||||
),
|
||||
(
|
||||
{"id": {"$between": (1, 1)}},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"name": {"$in": ["adam", "bob"]}},
|
||||
[1, 2],
|
||||
),
|
||||
]
|
||||
|
||||
TYPE_5_FILTERING_TEST_CASES = [
|
||||
# These involve special operators like $like, $ilike that
|
||||
# may be specified to certain databases.
|
||||
(
|
||||
{"name": {"$like": "a%"}},
|
||||
[1],
|
||||
),
|
||||
(
|
||||
{"name": {"$like": "%a%"}}, # adam and jane
|
||||
[1, 3],
|
||||
),
|
||||
]
|
@@ -1,13 +1,26 @@
|
||||
"""Test PGVector functionality."""
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Any, Dict, Generator, List, Type, Union
|
||||
|
||||
import pytest
|
||||
import sqlalchemy
|
||||
from langchain_core.documents import Document
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from langchain_community.vectorstores.pgvector import PGVector
|
||||
from langchain_community.vectorstores.pgvector import (
|
||||
SUPPORTED_OPERATORS,
|
||||
PGVector,
|
||||
)
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
from tests.integration_tests.vectorstores.fixtures.filtering_test_cases import (
|
||||
DOCUMENTS,
|
||||
TYPE_1_FILTERING_TEST_CASES,
|
||||
TYPE_2_FILTERING_TEST_CASES,
|
||||
TYPE_3_FILTERING_TEST_CASES,
|
||||
TYPE_4_FILTERING_TEST_CASES,
|
||||
TYPE_5_FILTERING_TEST_CASES,
|
||||
)
|
||||
|
||||
# The connection string matches the default settings in the docker-compose file
|
||||
# located in the root of the repository: [root]/docker/docker-compose.yml
|
||||
@@ -42,7 +55,7 @@ class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
|
||||
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
|
||||
|
||||
|
||||
def test_pgvector() -> None:
|
||||
def test_pgvector(pgvector: PGVector) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = PGVector.from_texts(
|
||||
@@ -375,3 +388,255 @@ def test_pgvector_with_custom_engine_args() -> None:
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
# We should reuse this test-case across other integrations
|
||||
# Add database fixture using pytest
|
||||
@pytest.fixture
|
||||
def pgvector() -> Generator[PGVector, None, None]:
|
||||
"""Create a PGVector instance."""
|
||||
store = PGVector.from_documents(
|
||||
documents=DOCUMENTS,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
relevance_score_fn=lambda d: d * 0,
|
||||
use_jsonb=True,
|
||||
)
|
||||
try:
|
||||
yield store
|
||||
# Do clean up
|
||||
finally:
|
||||
store.drop_tables()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_filter, expected_ids", TYPE_1_FILTERING_TEST_CASES)
|
||||
def test_pgvector_with_with_metadata_filters_1(
|
||||
pgvector: PGVector,
|
||||
test_filter: Dict[str, Any],
|
||||
expected_ids: List[int],
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
docs = pgvector.similarity_search("meow", k=5, filter=test_filter)
|
||||
assert [doc.metadata["id"] for doc in docs] == expected_ids, test_filter
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_filter, expected_ids", TYPE_2_FILTERING_TEST_CASES)
|
||||
def test_pgvector_with_with_metadata_filters_2(
|
||||
pgvector: PGVector,
|
||||
test_filter: Dict[str, Any],
|
||||
expected_ids: List[int],
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
docs = pgvector.similarity_search("meow", k=5, filter=test_filter)
|
||||
assert [doc.metadata["id"] for doc in docs] == expected_ids, test_filter
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_filter, expected_ids", TYPE_3_FILTERING_TEST_CASES)
|
||||
def test_pgvector_with_with_metadata_filters_3(
|
||||
pgvector: PGVector,
|
||||
test_filter: Dict[str, Any],
|
||||
expected_ids: List[int],
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
docs = pgvector.similarity_search("meow", k=5, filter=test_filter)
|
||||
assert [doc.metadata["id"] for doc in docs] == expected_ids, test_filter
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_filter, expected_ids", TYPE_4_FILTERING_TEST_CASES)
|
||||
def test_pgvector_with_with_metadata_filters_4(
|
||||
pgvector: PGVector,
|
||||
test_filter: Dict[str, Any],
|
||||
expected_ids: List[int],
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
docs = pgvector.similarity_search("meow", k=5, filter=test_filter)
|
||||
assert [doc.metadata["id"] for doc in docs] == expected_ids, test_filter
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_filter, expected_ids", TYPE_5_FILTERING_TEST_CASES)
|
||||
def test_pgvector_with_with_metadata_filters_5(
|
||||
pgvector: PGVector,
|
||||
test_filter: Dict[str, Any],
|
||||
expected_ids: List[int],
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
docs = pgvector.similarity_search("meow", k=5, filter=test_filter)
|
||||
assert [doc.metadata["id"] for doc in docs] == expected_ids, test_filter
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"invalid_filter",
|
||||
[
|
||||
["hello"],
|
||||
{
|
||||
"id": 2,
|
||||
"$name": "foo",
|
||||
},
|
||||
{"$or": {}},
|
||||
{"$and": {}},
|
||||
{"$between": {}},
|
||||
{"$eq": {}},
|
||||
],
|
||||
)
|
||||
def test_invalid_filters(pgvector: PGVector, invalid_filter: Any) -> None:
|
||||
"""Verify that invalid filters raise an error."""
|
||||
with pytest.raises(ValueError):
|
||||
pgvector._create_filter_clause(invalid_filter)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"filter,compiled",
|
||||
[
|
||||
({"id 'evil code'": 2}, ValueError),
|
||||
(
|
||||
{"id": "'evil code' == 2"},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, "
|
||||
"'$.id == $value', "
|
||||
"'{\"value\": \"''evil code'' == 2\"}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"name": 'a"b'},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, "
|
||||
"'$.name == $value', "
|
||||
'\'{"value": "a\\\\"b"}\')'
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_evil_code(
|
||||
pgvector: PGVector, filter: Any, compiled: Union[Type[Exception], str]
|
||||
) -> None:
|
||||
"""Test evil code."""
|
||||
if isinstance(compiled, str):
|
||||
clause = pgvector._create_filter_clause(filter)
|
||||
compiled_stmt = str(
|
||||
clause.compile(
|
||||
dialect=postgresql.dialect(),
|
||||
compile_kwargs={
|
||||
# This substitutes the parameters with their actual values
|
||||
"literal_binds": True
|
||||
},
|
||||
)
|
||||
)
|
||||
assert compiled_stmt == compiled
|
||||
else:
|
||||
with pytest.raises(compiled):
|
||||
pgvector._create_filter_clause(filter)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"filter,compiled",
|
||||
[
|
||||
(
|
||||
{"id": 2},
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id == $value', "
|
||||
"'{\"value\": 2}')",
|
||||
),
|
||||
(
|
||||
{"id": {"$eq": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id == $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"name": "foo"},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, "
|
||||
"'$.name == $value', "
|
||||
'\'{"value": "foo"}\')'
|
||||
),
|
||||
),
|
||||
(
|
||||
{"id": {"$ne": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id != $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"id": {"$gt": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id > $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"id": {"$gte": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id >= $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"id": {"$lt": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id < $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"id": {"$lte": 2}},
|
||||
(
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id <= $value', "
|
||||
"'{\"value\": 2}')"
|
||||
),
|
||||
),
|
||||
(
|
||||
{"name": {"$ilike": "foo"}},
|
||||
"langchain_pg_embedding.cmetadata ->> 'name' ILIKE 'foo'",
|
||||
),
|
||||
(
|
||||
{"name": {"$like": "foo"}},
|
||||
"langchain_pg_embedding.cmetadata ->> 'name' LIKE 'foo'",
|
||||
),
|
||||
(
|
||||
{"$or": [{"id": 1}, {"id": 2}]},
|
||||
# Please note that this might not be super optimized
|
||||
# Another way to phrase the query is as
|
||||
# langchain_pg_embedding.cmetadata @@ '($.id == 1 || $.id == 2)'
|
||||
"jsonb_path_match(langchain_pg_embedding.cmetadata, '$.id == $value', "
|
||||
"'{\"value\": 1}') OR jsonb_path_match(langchain_pg_embedding.cmetadata, "
|
||||
"'$.id == $value', '{\"value\": 2}')",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_pgvector_query_compilation(
|
||||
pgvector: PGVector, filter: Any, compiled: str
|
||||
) -> None:
|
||||
"""Test translation from IR to SQL"""
|
||||
clause = pgvector._create_filter_clause(filter)
|
||||
compiled_stmt = str(
|
||||
clause.compile(
|
||||
dialect=postgresql.dialect(),
|
||||
compile_kwargs={
|
||||
# This substitutes the parameters with their actual values
|
||||
"literal_binds": True
|
||||
},
|
||||
)
|
||||
)
|
||||
assert compiled_stmt == compiled
|
||||
|
||||
|
||||
def test_validate_operators() -> None:
|
||||
"""Verify that all operators have been categorized."""
|
||||
assert sorted(SUPPORTED_OPERATORS) == [
|
||||
"$and",
|
||||
"$between",
|
||||
"$eq",
|
||||
"$gt",
|
||||
"$gte",
|
||||
"$ilike",
|
||||
"$in",
|
||||
"$like",
|
||||
"$lt",
|
||||
"$lte",
|
||||
"$ne",
|
||||
"$nin",
|
||||
"$or",
|
||||
]
|
||||
|
Reference in New Issue
Block a user