community: adding langchain-predictionguard partner package documentation (#28832)

- *[x] **PR title**: "community: adding langchain-predictionguard
partner package documentation"

- *[x] **PR message**:
- **Description:** This PR adds documentation for the
langchain-predictionguard package to main langchain repo, along with
deprecating current Prediction Guard LLMs package. The LLMs package was
previously broken, so I also updated it one final time to allow it to
continue working from this point onward. . This enables users to chat
with LLMs through the Prediction Guard ecosystem.
    - **Package Links**: 
        -  [PyPI](https://pypi.org/project/langchain-predictionguard/)
- [Github
Repo](https://www.github.com/predictionguard/langchain-predictionguard)
    - **Issue:** None
    - **Dependencies:** None
- **Twitter handle:** [@predictionguard](https://x.com/predictionguard)

- *[x] **Add tests and docs**: All docs have been added for the partner
package, and the current LLMs package test was updated to reflect
changes.


- *[x] **Lint and test**: Linting tests are all passing.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
This commit is contained in:
Jacob Mansdorfer
2024-12-20 10:51:44 -05:00
committed by GitHub
parent 5135bf1002
commit 6d81137325
8 changed files with 1402 additions and 279 deletions

View File

@@ -1,90 +1,123 @@
import logging
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import ConfigDict
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
@deprecated(
since="0.3.28",
removal="1.0",
alternative_import="langchain_predictionguard.PredictionGuard",
)
class PredictionGuard(LLM):
"""Prediction Guard large language models.
To use, you should have the ``predictionguard`` python package installed, and the
environment variable ``PREDICTIONGUARD_TOKEN`` set with your access token, or pass
it as a named parameter to the constructor. To use Prediction Guard's API along
with OpenAI models, set the environment variable ``OPENAI_API_KEY`` with your
OpenAI API key as well.
environment variable ``PREDICTIONGUARD_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
pgllm = PredictionGuard(model="MPT-7B-Instruct",
token="my-access-token",
output={
"type": "boolean"
})
llm = PredictionGuard(
model="Hermes-3-Llama-3.1-8B",
predictionguard_api_key="your Prediction Guard API key",
)
"""
client: Any = None #: :meta private:
model: Optional[str] = "MPT-7B-Instruct"
model: Optional[str] = "Hermes-3-Llama-3.1-8B"
"""Model name to use."""
output: Optional[Dict[str, Any]] = None
"""The output type or structure for controlling the LLM output."""
max_tokens: int = 256
max_tokens: Optional[int] = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.75
temperature: Optional[float] = 0.75
"""A non-negative float that tunes the degree of randomness in generation."""
token: Optional[str] = None
"""Your Prediction Guard access token."""
top_p: Optional[float] = 0.1
"""A non-negative float that controls the diversity of the generated tokens."""
top_k: Optional[int] = None
"""The diversity of the generated text based on top-k sampling."""
stop: Optional[List[str]] = None
model_config = ConfigDict(
extra="forbid",
)
predictionguard_input: Optional[Dict[str, Union[str, bool]]] = None
"""The input check to run over the prompt before sending to the LLM."""
@pre_init
predictionguard_output: Optional[Dict[str, bool]] = None
"""The output check to run the LLM output against."""
predictionguard_api_key: Optional[str] = None
"""Prediction Guard API key."""
model_config = ConfigDict(extra="forbid")
@model_validator(mode="before")
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the access token and python package exists in environment."""
token = get_from_dict_or_env(values, "token", "PREDICTIONGUARD_TOKEN")
try:
import predictionguard as pg
"""Validate that the api_key and python package exists in environment."""
pg_api_key = get_from_dict_or_env(
values, "predictionguard_api_key", "PREDICTIONGUARD_API_KEY"
)
try:
from predictionguard import PredictionGuard
values["client"] = PredictionGuard(
api_key=pg_api_key,
)
values["client"] = pg.Client(token=token)
except ImportError:
raise ImportError(
"Could not import predictionguard python package. "
"Please install it with `pip install predictionguard`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the Prediction Guard API."""
return {
"max_tokens": self.max_tokens,
"temperature": self.temperature,
}
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
return {"model": self.model}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "predictionguard"
def _get_parameters(self, **kwargs: Any) -> Dict[str, Any]:
# input kwarg conflicts with LanguageModelInput on BaseChatModel
input = kwargs.pop("predictionguard_input", self.predictionguard_input)
output = kwargs.pop("predictionguard_output", self.predictionguard_output)
params = {
**{
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"input": (
input.model_dump() if isinstance(input, BaseModel) else input
),
"output": (
output.model_dump() if isinstance(output, BaseModel) else output
),
},
**kwargs,
}
return params
def _call(
self,
prompt: str,
@@ -99,31 +132,35 @@ class PredictionGuard(LLM):
The string generated by the model.
Example:
.. code-block:: python
response = pgllm.invoke("Tell me a joke.")
response = llm.invoke("Tell me a joke.")
"""
import predictionguard as pg
params = self._default_params
params = self._get_parameters(**kwargs)
stops = None
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop_sequences"] = self.stop
stops = self.stop
else:
params["stop_sequences"] = stop
stops = stop
response = pg.Completion.create(
response = self.client.completions.create(
model=self.model,
prompt=prompt,
output=self.output,
temperature=params["temperature"],
max_tokens=params["max_tokens"],
**kwargs,
**params,
)
for res in response["choices"]:
if res.get("status", "").startswith("error: "):
err_msg = res["status"].removeprefix("error: ")
raise ValueError(f"Error from PredictionGuard API: {err_msg}")
text = response["choices"][0]["text"]
# If stop tokens are provided, Prediction Guard's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
if stops:
text = enforce_stop_tokens(text, stops)
return text

View File

@@ -20,7 +20,7 @@ count=$(git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_ini
# PRs that increase the current count will not be accepted.
# PRs that decrease update the code in the repository
# and allow decreasing the count of are welcome!
current_count=124
current_count=123
if [ "$count" -gt "$current_count" ]; then
echo "The PR seems to be introducing new usage of @root_validator and/or @field_validator."

View File

@@ -1,10 +1,28 @@
"""Test Prediction Guard API wrapper."""
import pytest
from langchain_community.llms.predictionguard import PredictionGuard
def test_predictionguard_call() -> None:
def test_predictionguard_invoke() -> None:
"""Test valid call to prediction guard."""
llm = PredictionGuard(model="OpenAI-text-davinci-003") # type: ignore[call-arg]
output = llm.invoke("Say foo:")
llm = PredictionGuard(model="Hermes-3-Llama-3.1-8B") # type: ignore[call-arg]
output = llm.invoke("Tell a joke.")
assert isinstance(output, str)
def test_predictionguard_pii() -> None:
llm = PredictionGuard(
model="Hermes-3-Llama-3.1-8B",
predictionguard_input={"pii": "block"},
max_tokens=100,
temperature=1.0,
)
messages = [
"Hello, my name is John Doe and my SSN is 111-22-3333",
]
with pytest.raises(ValueError, match=r"Could not make prediction. pii detected"):
llm.invoke(messages)

View File

@@ -163,4 +163,7 @@ packages:
path: .
- name: langchain-oceanbase
repo: oceanbase/langchain-oceanbase
path: .
- name: langchain-predictionguard
repo: predictionguard/langchain-predictionguard
path: .