diff --git a/.github/workflows/check-broken-links.yml b/.github/workflows/check-broken-links.yml
index 62eb34882bc..130a5097ec5 100644
--- a/.github/workflows/check-broken-links.yml
+++ b/.github/workflows/check-broken-links.yml
@@ -22,7 +22,3 @@ jobs:
- name: Check broken links
run: yarn check-broken-links
working-directory: ./docs
- - name: Check broken links for .mdx files
- uses: gaurav-nelson/github-action-markdown-link-check@v1
- with:
- file-extension: '.mdx'
diff --git a/docs/docs/additional_resources/dependents.mdx b/docs/docs/additional_resources/dependents.mdx
index b19e05a85a3..a09df5027ec 100644
--- a/docs/docs/additional_resources/dependents.mdx
+++ b/docs/docs/additional_resources/dependents.mdx
@@ -241,7 +241,6 @@ Dependents stats for `langchain-ai/langchain`
|[alejandro-ao/langchain-ask-pdf](https://github.com/alejandro-ao/langchain-ask-pdf) | 514 |
|[sajjadium/ctf-archives](https://github.com/sajjadium/ctf-archives) | 507 |
|[continuum-llms/chatgpt-memory](https://github.com/continuum-llms/chatgpt-memory) | 502 |
-|[llmOS/opencopilot](https://github.com/llmOS/opencopilot) | 495 |
|[steamship-core/steamship-langchain](https://github.com/steamship-core/steamship-langchain) | 494 |
|[mpaepper/content-chatbot](https://github.com/mpaepper/content-chatbot) | 493 |
|[langchain-ai/langchain-aiplugin](https://github.com/langchain-ai/langchain-aiplugin) | 492 |
@@ -455,7 +454,6 @@ Dependents stats for `langchain-ai/langchain`
|[Teahouse-Studios/akari-bot](https://github.com/Teahouse-Studios/akari-bot) | 149 |
|[realminchoi/babyagi-ui](https://github.com/realminchoi/babyagi-ui) | 148 |
|[ssheng/BentoChain](https://github.com/ssheng/BentoChain) | 148 |
-|[lmstudio-ai/examples](https://github.com/lmstudio-ai/examples) | 147 |
|[solana-labs/chatgpt-plugin](https://github.com/solana-labs/chatgpt-plugin) | 147 |
|[aurelio-labs/arxiv-bot](https://github.com/aurelio-labs/arxiv-bot) | 147 |
|[Jaseci-Labs/jaseci](https://github.com/Jaseci-Labs/jaseci) | 146 |
diff --git a/docs/docs/additional_resources/youtube.mdx b/docs/docs/additional_resources/youtube.mdx
index 807f4521127..1fde4c30208 100644
--- a/docs/docs/additional_resources/youtube.mdx
+++ b/docs/docs/additional_resources/youtube.mdx
@@ -7,7 +7,7 @@
### Introduction to LangChain with Harrison Chase, creator of LangChain
- [Building the Future with LLMs, `LangChain`, & `Pinecone`](https://youtu.be/nMniwlGyX-c) by [Pinecone](https://www.youtube.com/@pinecone-io)
- [LangChain and Weaviate with Harrison Chase and Bob van Luijt - Weaviate Podcast #36](https://youtu.be/lhby7Ql7hbk) by [Weaviate • Vector Database](https://www.youtube.com/@Weaviate)
-- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@FullStackDeepLearning)
+- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@The_Full_Stack)
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI) by [Chat with data](https://www.youtube.com/@chatwithdata)
## Videos (sorted by views)
@@ -15,8 +15,8 @@
- [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain OpenAI API)](https://youtu.be/9AXP7tCI9PI) by [TechLead](https://www.youtube.com/@TechLead)
- [First look - `ChatGPT` + `WolframAlpha` (`GPT-3.5` and Wolfram|Alpha via LangChain by James Weaver)](https://youtu.be/wYGbY811oMo) by [Dr Alan D. Thompson](https://www.youtube.com/@DrAlanDThompson)
- [LangChain explained - The hottest new Python framework](https://youtu.be/RoR4XJw8wIc) by [AssemblyAI](https://www.youtube.com/@AssemblyAI)
-- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
-- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
+- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
+- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
- [Build your own LLM Apps with LangChain & `GPT-Index`](https://youtu.be/-75p09zFUJY) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [`BabyAGI` - New System of Autonomous AI Agents with LangChain](https://youtu.be/lg3kJvf1kXo) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [Run `BabyAGI` with Langchain Agents (with Python Code)](https://youtu.be/WosPGHPObx8) by [1littlecoder](https://www.youtube.com/@1littlecoder)
@@ -37,15 +37,15 @@
- [Building AI LLM Apps with LangChain (and more?) - LIVE STREAM](https://www.youtube.com/live/M-2Cj_2fzWI?feature=share) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
- [`ChatGPT` with any `YouTube` video using langchain and `chromadb`](https://youtu.be/TQZfB2bzVwU) by [echohive](https://www.youtube.com/@echohive)
- [How to Talk to a `PDF` using LangChain and `ChatGPT`](https://youtu.be/v2i1YDtrIwk) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
-- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@merksworld)
-- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nick_daigs)
+- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@heymichaeldaigler)
+- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nickdaigler)
- [LangChain. Crear aplicaciones Python impulsadas por GPT](https://youtu.be/DkW_rDndts8) by [Jesús Conde](https://www.youtube.com/@0utKast)
- [Easiest Way to Use GPT In Your Products | LangChain Basics Tutorial](https://youtu.be/fLy0VenZyGc) by [Rachel Woods](https://www.youtube.com/@therachelwoods)
- [`BabyAGI` + `GPT-4` Langchain Agent with Internet Access](https://youtu.be/wx1z_hs5P6E) by [tylerwhatsgood](https://www.youtube.com/@tylerwhatsgood)
- [Learning LLM Agents. How does it actually work? LangChain, AutoGPT & OpenAI](https://youtu.be/mb_YAABSplk) by [Arnoldas Kemeklis](https://www.youtube.com/@processusAI)
- [Get Started with LangChain in `Node.js`](https://youtu.be/Wxx1KUWJFv4) by [Developers Digest](https://www.youtube.com/@DevelopersDigest)
- [LangChain + `OpenAI` tutorial: Building a Q&A system w/ own text data](https://youtu.be/DYOU_Z0hAwo) by [Samuel Chan](https://www.youtube.com/@SamuelChan)
-- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@merksworld)
+- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
- [Connecting the Internet with `ChatGPT` (LLMs) using Langchain And Answers Your Questions](https://youtu.be/9Y0TBC63yZg) by [Kamalraj M M](https://www.youtube.com/@insightbuilder)
- [Build More Powerful LLM Applications for Business’s with LangChain (Beginners Guide)](https://youtu.be/sp3-WLKEcBg) by[ No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
@@ -82,7 +82,7 @@
- [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
-- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
+- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
- [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
- [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- [Build AI chatbot with custom knowledge base using OpenAI API and GPT Index](https://youtu.be/vDZAZuaXf48) by [Irina Nik](https://www.youtube.com/@irina_nik)
@@ -93,7 +93,7 @@
- [Build a Custom Chatbot with OpenAI: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU) by [Fabrikod](https://www.youtube.com/@fabrikod)
- [`Flowise` is an open-source no-code UI visual tool to build 🦜🔗LangChain applications](https://youtu.be/CovAPtQPU0k) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- [LangChain & GPT 4 For Data Analysis: The `Pandas` Dataframe Agent](https://youtu.be/rFQ5Kmkd4jc) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
-- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Toolfinder AI](https://www.youtube.com/@toolfinderai)
+- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Girlfriend GPT](https://www.youtube.com/@girlfriendGPT)
- [How to build with Langchain 10x easier | ⛓️ LangFlow & `Flowise`](https://youtu.be/Ya1oGL7ZTvU) by [AI Jason](https://www.youtube.com/@AIJasonZ)
- [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg) by [Krish Naik](https://www.youtube.com/@krishnaik06)
- ⛓ [Vector Embeddings Tutorial – Code Your Own AI Assistant with `GPT-4 API` + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=5uJhxoh2tvdnOXok) by [FreeCodeCamp.org](https://www.youtube.com/@freecodecamp)
@@ -109,7 +109,7 @@
- ⛓ [PyData Heidelberg #11 - TimeSeries Forecasting & LLM Langchain](https://www.youtube.com/live/Glbwb5Hxu18?si=PIEY8Raq_C9PCHuW) by [PyData](https://www.youtube.com/@PyDataTV)
- ⛓ [Prompt Engineering in Web Development | Using LangChain and Templates with OpenAI](https://youtu.be/pK6WzlTOlYw?si=fkcDQsBG2h-DM8uQ) by [Akamai Developer
](https://www.youtube.com/@AkamaiDeveloper)
-- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIDataScienceOnAWS)
+- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIOnAWS)
- ⛓ [`LLAMA2 70b-chat` Multiple Documents Chatbot with Langchain & Streamlit |All OPEN SOURCE|Replicate API](https://youtu.be/vhghB81vViM?si=dszzJnArMeac7lyc) by [DataInsightEdge](https://www.youtube.com/@DataInsightEdge01)
- ⛓ [Chatting with 44K Fashion Products: LangChain Opportunities and Pitfalls](https://youtu.be/Zudgske0F_s?si=8HSshHoEhh0PemJA) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- ⛓ [Structured Data Extraction from `ChatGPT` with LangChain](https://youtu.be/q1lYg8JISpQ?si=0HctzOHYZvq62sve) by [MG](https://www.youtube.com/@MG_cafe)
diff --git a/docs/docs/guides/evaluation/comparison/index.mdx b/docs/docs/guides/evaluation/comparison/index.mdx
index 8f956f6068d..e5703725da0 100644
--- a/docs/docs/guides/evaluation/comparison/index.mdx
+++ b/docs/docs/guides/evaluation/comparison/index.mdx
@@ -17,7 +17,7 @@ Here's a summary of the key methods and properties of a comparison evaluator:
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
:::note LangSmith Support
-The [run_on_dataset](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.smith) evaluation method is designed to evaluate only a single model at a time, and thus, doesn't support these evaluators.
+The [run_on_dataset](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.smith) evaluation method is designed to evaluate only a single model at a time, and thus, doesn't support these evaluators.
:::
Detailed information about creating custom evaluators and the available built-in comparison evaluators is provided in the following sections.
diff --git a/docs/docs/guides/evaluation/index.mdx b/docs/docs/guides/evaluation/index.mdx
index 5415b33e69c..4603a40e537 100644
--- a/docs/docs/guides/evaluation/index.mdx
+++ b/docs/docs/guides/evaluation/index.mdx
@@ -37,6 +37,6 @@ Check out the docs for examples and leaderboard information.
## Reference Docs
-For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
+For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.evaluation) directly.
diff --git a/docs/docs/guides/safety/constitutional_chain.mdx b/docs/docs/guides/safety/constitutional_chain.mdx
index e81c5ca6094..c77380db48c 100644
--- a/docs/docs/guides/safety/constitutional_chain.mdx
+++ b/docs/docs/guides/safety/constitutional_chain.mdx
@@ -88,11 +88,6 @@ constitutional_chain.run(question="How can I steal kittens?")
## Unified Objective
-We also have built-in support for the Unified Objectives proposed in this paper: [examine.dev/docs/Unified_objectives.pdf](https://examine.dev/docs/Unified_objectives.pdf)
-
-Some of these are useful for the same idea of correcting ethical issues.
-
-
```python
principles = ConstitutionalChain.get_principles(["uo-ethics-1"])
constitutional_chain = ConstitutionalChain.from_llm(
diff --git a/docs/docs/integrations/platforms/huggingface.mdx b/docs/docs/integrations/platforms/huggingface.mdx
index cf6ae39811f..fbd1848105e 100644
--- a/docs/docs/integrations/platforms/huggingface.mdx
+++ b/docs/docs/integrations/platforms/huggingface.mdx
@@ -90,7 +90,7 @@ from langchain_community.embeddings import HuggingFaceInstructEmbeddings
#### HuggingFaceBgeEmbeddings
>[BGE models on the HuggingFace](https://huggingface.co/BAAI/bge-large-en) are [the best open-source embedding models](https://huggingface.co/spaces/mteb/leaderboard).
->BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://www.baai.ac.cn/english.html). `BAAI` is a private non-profit organization engaged in AI research and development.
+>BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://en.wikipedia.org/wiki/Beijing_Academy_of_Artificial_Intelligence). `BAAI` is a private non-profit organization engaged in AI research and development.
See a [usage example](/docs/integrations/text_embedding/bge_huggingface).
diff --git a/docs/docs/integrations/providers/bittensor.mdx b/docs/docs/integrations/providers/bittensor.mdx
index 7bc67196782..137069077db 100644
--- a/docs/docs/integrations/providers/bittensor.mdx
+++ b/docs/docs/integrations/providers/bittensor.mdx
@@ -5,10 +5,7 @@
## Installation and Setup
-Get your API_KEY from [Neural Internet](https://api.neuralinternet.ai).
-
-You can [analyze API_KEYS](https://api.neuralinternet.ai/api-keys)
-and [logs of your usage](https://api.neuralinternet.ai/logs).
+Get your API_KEY from [Neural Internet](https://neuralinternet.ai/).
## LLMs
diff --git a/docs/docs/integrations/providers/datadog.mdx b/docs/docs/integrations/providers/datadog.mdx
index fd25e3d47cd..b854c668759 100644
--- a/docs/docs/integrations/providers/datadog.mdx
+++ b/docs/docs/integrations/providers/datadog.mdx
@@ -66,23 +66,23 @@ patch(langchain=True)
# patch(langchain=True, openai=True)patch_all
```
-See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html] for more advanced usage.
+See the [APM Python library documentation](https://ddtrace.readthedocs.io/en/stable/installation_quickstart.html) for more advanced usage.
## Configuration
-See the [APM Python library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain] for all the available configuration options.
+See the [APM Python library documentation](https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain) for all the available configuration options.
### Log Prompt & Completion Sampling
To enable log prompt and completion sampling, set the `DD_LANGCHAIN_LOGS_ENABLED=1` environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions.
-To adjust the log sample rate, see the [APM library documentation][https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain].
+To adjust the log sample rate, see the [APM library documentation](https://ddtrace.readthedocs.io/en/stable/integrations.html#langchain).
**Note**: Logs submission requires `DD_API_KEY` to be specified when running `ddtrace-run`.
## Troubleshooting
-Need help? Create an issue on [ddtrace](https://github.com/DataDog/dd-trace-py) or contact [Datadog support][https://docs.datadoghq.com/help/].
+Need help? Create an issue on [ddtrace](https://github.com/DataDog/dd-trace-py) or contact [Datadog support](https://docs.datadoghq.com/help/).
diff --git a/docs/docs/integrations/providers/flyte.mdx b/docs/docs/integrations/providers/flyte.mdx
index 1e75bea5c7c..38966d5831a 100644
--- a/docs/docs/integrations/providers/flyte.mdx
+++ b/docs/docs/integrations/providers/flyte.mdx
@@ -14,7 +14,7 @@ The purpose of this notebook is to demonstrate the integration of a `FlyteCallba
## Flyte Tasks
-A Flyte [task](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/task.html) serves as the foundational building block of Flyte.
+A Flyte [task](https://docs.flyte.org/en/latest/user_guide/basics/tasks.html) serves as the foundational building block of Flyte.
To execute LangChain experiments, you need to write Flyte tasks that define the specific steps and operations involved.
NOTE: The [getting started guide](https://docs.flyte.org/projects/cookbook/en/latest/index.html) offers detailed, step-by-step instructions on installing Flyte locally and running your initial Flyte pipeline.
@@ -46,9 +46,9 @@ os.environ["SERPAPI_API_KEY"] = ""
Replace `` and `` with your respective API keys obtained from OpenAI and Serp API.
To guarantee reproducibility of your pipelines, Flyte tasks are containerized.
-Each Flyte task must be associated with an image, which can either be shared across the entire Flyte [workflow](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/basic_workflow.html) or provided separately for each task.
+Each Flyte task must be associated with an image, which can either be shared across the entire Flyte [workflow](https://docs.flyte.org/en/latest/user_guide/basics/workflows.html) or provided separately for each task.
-To streamline the process of supplying the required dependencies for each Flyte task, you can initialize an [`ImageSpec`](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/image_spec/image_spec.html) object.
+To streamline the process of supplying the required dependencies for each Flyte task, you can initialize an [`ImageSpec`](https://docs.flyte.org/en/latest/user_guide/customizing_dependencies/imagespec.html) object.
This approach automatically triggers a Docker build, alleviating the need for users to manually create a Docker image.
```python
diff --git a/docs/docs/integrations/providers/helicone.mdx b/docs/docs/integrations/providers/helicone.mdx
index 456abe121fe..548088d0791 100644
--- a/docs/docs/integrations/providers/helicone.mdx
+++ b/docs/docs/integrations/providers/helicone.mdx
@@ -16,7 +16,7 @@ With your LangChain environment you can just add the following parameter.
export OPENAI_API_BASE="https://oai.hconeai.com/v1"
```
-Now head over to [helicone.ai](https://helicone.ai/onboarding?step=2) to create your account, and add your OpenAI API key within our dashboard to view your logs.
+Now head over to [helicone.ai](https://www.helicone.ai/signup) to create your account, and add your OpenAI API key within our dashboard to view your logs.

diff --git a/docs/docs/integrations/providers/log10.mdx b/docs/docs/integrations/providers/log10.mdx
index 38ef1fc7630..b9e3c580305 100644
--- a/docs/docs/integrations/providers/log10.mdx
+++ b/docs/docs/integrations/providers/log10.mdx
@@ -35,7 +35,7 @@ llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback])
[Log10 + Langchain + Logs docs](https://github.com/log10-io/log10/blob/main/logging.md#langchain-logger)
-[More details + screenshots](https://log10.io/docs/logs) including instructions for self-hosting logs
+[More details + screenshots](https://log10.io/docs/observability/logs) including instructions for self-hosting logs
## How to use tags with Log10
@@ -99,6 +99,6 @@ with log10_session(tags=["foo", "bar"]):
## How to debug Langchain calls
-[Example of debugging](https://log10.io/docs/prompt_chain_debugging)
+[Example of debugging](https://log10.io/docs/observability/prompt_chain_debugging)
[More Langchain examples](https://github.com/log10-io/log10/tree/main/examples#langchain)
diff --git a/docs/docs/integrations/providers/mlflow.mdx b/docs/docs/integrations/providers/mlflow.mdx
index 791b976f388..cb4d5aba840 100644
--- a/docs/docs/integrations/providers/mlflow.mdx
+++ b/docs/docs/integrations/providers/mlflow.mdx
@@ -51,7 +51,7 @@ mlflow deployments start-server --config-path /path/to/config.yaml
> This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
> models in the pyfunc flavor.
-See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain) for more information.
+See the [API documentation and examples](https://www.mlflow.org/docs/latest/llms/langchain/index.html) for more information.
## Completions Example
diff --git a/docs/docs/integrations/providers/mlflow_ai_gateway.mdx b/docs/docs/integrations/providers/mlflow_ai_gateway.mdx
index a18f4a28e68..fbe59c84650 100644
--- a/docs/docs/integrations/providers/mlflow_ai_gateway.mdx
+++ b/docs/docs/integrations/providers/mlflow_ai_gateway.mdx
@@ -6,10 +6,9 @@ MLflow AI Gateway has been deprecated. Please use [MLflow Deployments for LLMs](
:::
->[The MLflow AI Gateway](https://www.mlflow.org/docs/latest/gateway/index) service is a powerful tool designed to streamline the usage and management of various large
+>[The MLflow AI Gateway](https://www.mlflow.org/docs/latest/index.html) service is a powerful tool designed to streamline the usage and management of various large
> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface
> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests.
-> See [the MLflow AI Gateway documentation](https://mlflow.org/docs/latest/gateway/index) for more details.
## Installation and Setup
@@ -58,7 +57,7 @@ mlflow gateway start --config-path /path/to/config.yaml
> This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
> models in the pyfunc flavor.
-See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain).
+See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain.html?highlight=langchain#module-mlflow.langchain).
diff --git a/docs/docs/integrations/providers/momento.mdx b/docs/docs/integrations/providers/momento.mdx
index 159a0d53e4b..6d399998780 100644
--- a/docs/docs/integrations/providers/momento.mdx
+++ b/docs/docs/integrations/providers/momento.mdx
@@ -11,7 +11,7 @@ This page covers how to use the [Momento](https://gomomento.com) ecosystem withi
## Installation and Setup
-- Sign up for a free account [here](https://console.momentohq.com) to get an API key
+- Sign up for a free account [here](https://console.gomomento.com/) to get an API key
- Install the Momento Python SDK with `pip install momento`
## Cache
diff --git a/docs/docs/integrations/providers/psychic.mdx b/docs/docs/integrations/providers/psychic.mdx
index c29fe6e3316..a415f8a5a48 100644
--- a/docs/docs/integrations/providers/psychic.mdx
+++ b/docs/docs/integrations/providers/psychic.mdx
@@ -1,5 +1,13 @@
+---
+sidebar_class_name: hidden
+---
+
# Psychic
+:::warning
+This provider is no longer maintained, and may not work. Use with caution.
+:::
+
>[Psychic](https://www.psychic.dev/) is a platform for integrating with SaaS tools like `Notion`, `Zendesk`,
> `Confluence`, and `Google Drive` via OAuth and syncing documents from these applications to your SQL or vector
> database. You can think of it like Plaid for unstructured data.
diff --git a/docs/docs/integrations/providers/symblai_nebula.mdx b/docs/docs/integrations/providers/symblai_nebula.mdx
index 57c27f6a249..a302bd81b55 100644
--- a/docs/docs/integrations/providers/symblai_nebula.mdx
+++ b/docs/docs/integrations/providers/symblai_nebula.mdx
@@ -7,7 +7,6 @@ It is broken into two parts: installation and setup, and then references to spec
- Get an [Nebula API Key](https://info.symbl.ai/Nebula_Private_Beta.html) and set as environment variable `NEBULA_API_KEY`
- Please see the [Nebula documentation](https://docs.symbl.ai/docs/nebula-llm) for more details.
-- No time? Visit the [Nebula Quickstart Guide](https://docs.symbl.ai/docs/nebula-quickstart).
### LLM
diff --git a/docs/docs/integrations/providers/trulens.mdx b/docs/docs/integrations/providers/trulens.mdx
index 97dc0c14a24..31b794b72f9 100644
--- a/docs/docs/integrations/providers/trulens.mdx
+++ b/docs/docs/integrations/providers/trulens.mdx
@@ -8,7 +8,7 @@ TruLens is an [open-source](https://github.com/truera/trulens) package that prov
## Quick start
-Once you've created your LLM chain, you can use TruLens for evaluation and tracking. TruLens has a number of [out-of-the-box Feedback Functions](https://www.trulens.org/trulens_eval/feedback_functions/), and is also an extensible framework for LLM evaluation.
+Once you've created your LLM chain, you can use TruLens for evaluation and tracking. TruLens has a number of [out-of-the-box Feedback Functions](https://www.trulens.org/trulens_eval/evaluation/feedback_functions/), and is also an extensible framework for LLM evaluation.
```python
# create a feedback function
diff --git a/docs/docs/integrations/providers/typesense.mdx b/docs/docs/integrations/providers/typesense.mdx
index 9036714e529..5bb2b3ca0e4 100644
--- a/docs/docs/integrations/providers/typesense.mdx
+++ b/docs/docs/integrations/providers/typesense.mdx
@@ -1,7 +1,7 @@
# Typesense
> [Typesense](https://typesense.org) is an open-source, in-memory search engine, that you can either
-> [self-host](https://typesense.org/docs/guide/install-typesense#option-2-local-machine-self-hosting) or run
+> [self-host](https://typesense.org/docs/guide/install-typesense.html#option-2-local-machine-self-hosting) or run
> on [Typesense Cloud](https://cloud.typesense.org/).
> `Typesense` focuses on performance by storing the entire index in RAM (with a backup on disk) and also
> focuses on providing an out-of-the-box developer experience by simplifying available options and setting good defaults.
diff --git a/docs/docs/integrations/providers/unstructured.mdx b/docs/docs/integrations/providers/unstructured.mdx
index 1c0ad91b09a..e23ce3c5029 100644
--- a/docs/docs/integrations/providers/unstructured.mdx
+++ b/docs/docs/integrations/providers/unstructured.mdx
@@ -28,7 +28,7 @@ simply run `pip install unstructured` and use `UnstructuredAPIFileLoader` or
The Unstructured API requires API keys to make requests.
-You can generate a free API key [here](https://www.unstructured.io/api-key) and start using it today!
+You can request an API key [here](https://unstructured.io/api-key-hosted) and start using it today!
Checkout the README [here](https://github.com/Unstructured-IO/unstructured-api) here to get started making API calls.
We'd love to hear your feedback, let us know how it goes in our [community slack](https://join.slack.com/t/unstructuredw-kbe4326/shared_invite/zt-1x7cgo0pg-PTptXWylzPQF9xZolzCnwQ).
And stay tuned for improvements to both quality and performance!
diff --git a/docs/docs/integrations/text_embedding/bge_huggingface.ipynb b/docs/docs/integrations/text_embedding/bge_huggingface.ipynb
index 50ffc161d77..a5032dcfe13 100644
--- a/docs/docs/integrations/text_embedding/bge_huggingface.ipynb
+++ b/docs/docs/integrations/text_embedding/bge_huggingface.ipynb
@@ -8,7 +8,7 @@
"# BGE on Hugging Face\n",
"\n",
">[BGE models on the HuggingFace](https://huggingface.co/BAAI/bge-large-en) are [the best open-source embedding models](https://huggingface.co/spaces/mteb/leaderboard).\n",
- ">BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://www.baai.ac.cn/english.html). `BAAI` is a private non-profit organization engaged in AI research and development.\n",
+ ">BGE model is created by the [Beijing Academy of Artificial Intelligence (BAAI)](https://en.wikipedia.org/wiki/Beijing_Academy_of_Artificial_Intelligence). `BAAI` is a private non-profit organization engaged in AI research and development.\n",
"\n",
"This notebook shows how to use `BGE Embeddings` through `Hugging Face`"
]
diff --git a/docs/docs/modules/data_connection/document_transformers/index.mdx b/docs/docs/modules/data_connection/document_transformers/index.mdx
index d350ea7e79e..c6d891a9606 100644
--- a/docs/docs/modules/data_connection/document_transformers/index.mdx
+++ b/docs/docs/modules/data_connection/document_transformers/index.mdx
@@ -43,7 +43,7 @@ LangChain offers many different types of text splitters. These all live in the `
| Code | Code (Python, JS) specific characters | | Splits text based on characters specific to coding languages. 15 different languages are available to choose from. |
| Token | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
| Character | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
-| [Experimental] Semantic Chunker | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb) |
+| [Experimental] Semantic Chunker | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
| [AI21 Semantic Text Splitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter) | Semantics | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |