openai[minor]: release 0.3 (#29100)

## Goal

Solve the following problems with `langchain-openai`:

- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.

## Breaking changes:

- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.

---------

Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
ccurme
2025-01-10 10:50:32 -05:00
committed by GitHub
parent facfd42768
commit 6e63ccba84
14 changed files with 912 additions and 295 deletions

View File

@@ -18,13 +18,15 @@ from typing import (
)
import openai
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import LangSmithParams
from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatResult
from langchain_core.runnables import Runnable
from langchain_core.utils import from_env, secret_from_env
from langchain_core.utils.pydantic import is_basemodel_subclass
from pydantic import BaseModel, Field, SecretStr, model_validator
from typing_extensions import Self
from typing_extensions import Literal, Self
from langchain_openai.chat_models.base import BaseChatOpenAI
@@ -79,7 +81,7 @@ class AzureChatOpenAI(BaseChatOpenAI):
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning
timeout: Union[float, Tuple[float, float], Any, None]
Timeout for requests.
max_retries: int
max_retries: Optional[int]
Max number of retries.
organization: Optional[str]
OpenAI organization ID. If not passed in will be read from env
@@ -586,9 +588,9 @@ class AzureChatOpenAI(BaseChatOpenAI):
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if self.n < 1:
if self.n is not None and self.n < 1:
raise ValueError("n must be at least 1.")
if self.n > 1 and self.streaming:
elif self.n is not None and self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
if self.disabled_params is None:
@@ -641,10 +643,12 @@ class AzureChatOpenAI(BaseChatOpenAI):
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if self.max_retries is not None:
client_params["max_retries"] = self.max_retries
if not self.client:
sync_specific = {"http_client": self.http_client}
self.root_client = openai.AzureOpenAI(**client_params, **sync_specific) # type: ignore[arg-type]
@@ -737,3 +741,323 @@ class AzureChatOpenAI(BaseChatOpenAI):
)
return chat_result
def with_structured_output(
self,
schema: Optional[_DictOrPydanticClass] = None,
*,
method: Literal["function_calling", "json_mode", "json_schema"] = "json_schema",
include_raw: bool = False,
strict: Optional[bool] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema:
The output schema. Can be passed in as:
- a JSON Schema,
- a TypedDict class,
- or a Pydantic class,
- an OpenAI function/tool schema.
If ``schema`` is a Pydantic class then the model output will be a
Pydantic instance of that class, and the model-generated fields will be
validated by the Pydantic class. Otherwise the model output will be a
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
for more on how to properly specify types and descriptions of
schema fields when specifying a Pydantic or TypedDict class.
method: The method for steering model generation, one of:
- "json_schema":
Uses OpenAI's Structured Output API:
https://platform.openai.com/docs/guides/structured-outputs
Supported for "gpt-4o-mini", "gpt-4o-2024-08-06", "o1", and later
models.
- "function_calling":
Uses OpenAI's tool-calling (formerly called function calling)
API: https://platform.openai.com/docs/guides/function-calling
- "json_mode":
Uses OpenAI's JSON mode. Note that if using JSON mode then you
must include instructions for formatting the output into the
desired schema into the model call:
https://platform.openai.com/docs/guides/structured-outputs/json-mode
Learn more about the differences between the methods and which models
support which methods here:
- https://platform.openai.com/docs/guides/structured-outputs/structured-outputs-vs-json-mode
- https://platform.openai.com/docs/guides/structured-outputs/function-calling-vs-response-format
include_raw:
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
strict:
- True:
Model output is guaranteed to exactly match the schema.
The input schema will also be validated according to
https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
- False:
Input schema will not be validated and model output will not be
validated.
- None:
``strict`` argument will not be passed to the model.
If schema is specified via TypedDict or JSON schema, ``strict`` is not
enabled by default. Pass ``strict=True`` to enable it.
Note: ``strict`` can only be non-null if ``method`` is
``"json_schema"`` or ``"function_calling"``.
kwargs: Additional keyword args aren't supported.
Returns:
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
| If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
| If ``include_raw`` is True, then Runnable outputs a dict with keys:
- "raw": BaseMessage
- "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
- "parsing_error": Optional[BaseException]
.. versionchanged:: 0.1.20
Added support for TypedDict class ``schema``.
.. versionchanged:: 0.1.21
Support for ``strict`` argument added.
Support for ``method="json_schema"`` added.
.. versionchanged:: 0.3.0
``method`` default changed from "function_calling" to "json_schema".
.. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=False, strict=True
Note, OpenAI has a number of restrictions on what types of schemas can be
provided if ``strict`` = True. When using Pydantic, our model cannot
specify any Field metadata (like min/max constraints) and fields cannot
have default values.
See all constraints here: https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
.. code-block:: python
from typing import Optional
from langchain_openai import AzureChatOpenAI
from pydantic import BaseModel, Field
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: Optional[str] = Field(
default=..., description="A justification for the answer."
)
llm = AzureChatOpenAI(azure_deployment="...", model="gpt-4o", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
.. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False, strict=False
.. code-block:: python
from typing import Optional
from langchain_openai import AzureChatOpenAI
from pydantic import BaseModel, Field
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: Optional[str] = Field(
default=..., description="A justification for the answer."
)
llm = AzureChatOpenAI(azure_deployment="...", model="gpt-4o", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, method="function_calling"
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
.. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=True
.. code-block:: python
from langchain_openai import AzureChatOpenAI
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = AzureChatOpenAI(azure_deployment="...", model="gpt-4o", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
.. dropdown:: Example: schema=TypedDict class, method="json_schema", include_raw=False, strict=False
.. code-block:: python
from typing_extensions import Annotated, TypedDict
from langchain_openai import AzureChatOpenAI
class AnswerWithJustification(TypedDict):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: Annotated[
Optional[str], None, "A justification for the answer."
]
llm = AzureChatOpenAI(azure_deployment="...", model="gpt-4o", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
.. dropdown:: Example: schema=OpenAI function schema, method="json_schema", include_raw=False
.. code-block:: python
from langchain_openai import AzureChatOpenAI
oai_schema = {
'name': 'AnswerWithJustification',
'description': 'An answer to the user question along with justification for the answer.',
'parameters': {
'type': 'object',
'properties': {
'answer': {'type': 'string'},
'justification': {'description': 'A justification for the answer.', 'type': 'string'}
},
'required': ['answer']
}
}
llm = AzureChatOpenAI(
azure_deployment="...",
model="gpt-4o",
temperature=0,
)
structured_llm = llm.with_structured_output(oai_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
.. dropdown:: Example: schema=Pydantic class, method="json_mode", include_raw=True
.. code-block::
from langchain_openai import AzureChatOpenAI
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
answer: str
justification: str
llm = AzureChatOpenAI(
azure_deployment="...",
model="gpt-4o",
temperature=0,
)
structured_llm = llm.with_structured_output(
AnswerWithJustification,
method="json_mode",
include_raw=True
)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\\n "answer": "They are both the same weight.",\\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
# 'parsing_error': None
# }
.. dropdown:: Example: schema=None, method="json_mode", include_raw=True
.. code-block::
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\\n "answer": "They are both the same weight.",\\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
# 'parsed': {
# 'answer': 'They are both the same weight.',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
# },
# 'parsing_error': None
# }
""" # noqa: E501
return super().with_structured_output(
schema, method=method, include_raw=include_raw, strict=strict, **kwargs
)